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ABSTRACT

There are two primary objectives of this work: first
to examine the behavior of local, turbulent shear-stress
models, and second to extend the method of weighted residuals
(a method for solving a system of partial differential
equations) to the solution of the compressible turbulent
boundary-layer equations. Thus, in the first part of this
work shear models are studied both as they influence a given
boundary-layer prediction scheme and also as they yield
shear-stress profiles independent of prediction methods.
Shear-stress calculations are then examined as reported by
previous workers, as calculated from the intermediate boun~-
dary~layer results of other methods, and as computed in the
present investigation. It is found that the behavior of
many of the shear models is qualitatively incorrect in
terms of their prediction of the shear-stress distribution.
The cause of the anomalous behavior of the shear-stress
profiles is discussed in relation to the specific shear
models, and the effects of this behavior on boundary-layer
prediction programs are examined. In addition, previous
efforts to correct the anomalous behavior, such as, employ-
ing a diffusion equation on the maximum eddy-viscosity or

smoothing eddy-viscosity profiles, are also indicated.
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Finally, it is shown possible to develop an iterative pro-
cedure to at least provide properly behaved shear-stress
profiles at the initial station of a prediction program.

In the second part of this study, the computational
advantages of the method of weighted residuals are compared
with those of finite~difference methods and those of the
conventional integral methods. Since the method of weighted
residuals is found to possess many of the advantages of the
other two ﬁethods, it is extended to the solution of the
compressible, turbulent boundary-layer equations. Numerical
solutions, for the compressible flow of air over adiabatic
flat plates at free stream Mach numbers ranging from 2.54
to 4.2, are compared with both experiment and the finite-
difference calculations of Cebeci, Smith, and Mosinskis
[1]. The general analysis of the present investigation
includes pressure-gradient and heat-transfer effects, but
these effects are not incorporated into the computer program;
consequently, no numerical results are presented fqr Elows

with pressure gradient or heat transfer.



1. INTRODUCTION

The predictién of the compressible, turbulent boundary
layer became of critical importance with advances in the
design of supersonic aircraft, guided missiles, gas tur-
bines, and other high-speed gas flow devices. With the
high velocities involved in such applications, drag and
heating effects are very important design criteria; conse-
quently, a calculation procedure for compressible, turbu-
lent boundary layers can be a valuable design tool - par=-
ticularly in the early stages of the problem analysis.

In the past twenty years considerable research effort
has been focused on the understanding and prediction of
turbulent boundary layers, primarily incompressible, but in
the past five years a few of the incompressible analytical
techniques have been extended to compressible flow appli-
cations with varying degrees of success.

In any prediction scheme for turbulent boundary layers,
there are three major factors for consideration: the
governing differential equations which mathematically model
the physical situation; a turbulent shear-stress informa-
tion model which renders the system of governing equations,
with their appropriate boundary conditions, a well-posed

mathematical problem; and finally the mathematical procedure



to solve the well-posed problem. The goal of the present
work is to advance the existing state of knowledge in two of
these areas — namely, turbulent shear models and mathematical
solution techniques.

An investigation is made of the predicted shear-stress
distributions in turbulent flow, and the resulting calcula-
tions are analyzed for four separate investigations including
the present one as well as some unpublished results of other
investigators. The anomalous behavior of some of these shear-
stress profiles is examined, and a plausible explanation of
this behavior is set forth. Various methods of avoiding
this anomalous shear-stress behavior are also postulated.

The method of weighted residuals, a powefful mathe-
matical technique for approximately solving a system of com-
plex partial differential equations, is described; and the
computational advantages of this method are compared with
those of conventional integral techniques and finite-differxr-
ence procedures. Since ultimately the Method of Weighted
Residuals (or MWR) is proposed as retaining many of the
computational advantages of both integral and finite-differ-
ence techniques, the MWR is extended to the solution of the
compressible, turbulent boundary-layer equations using both
an eddy-viscosity model and various other similarity shear-
stress models. A new treatment for the energy equation is
developed which has distinct computational advantages over

procedures previously employed for laminar flows.



Since the expérimental procedure for varying ReX differs
from that of the calculation procedure, several valid tech-
niques of comparing the experimental and analytical results
are studied. A comparison technique is presehted which
appears to properly test the ability of a prediction method.
The corresponding results of the prediction program are
compared with both experiment and the finite-difference cal-
culations of Cebeci, Smith, and Mosinskis [1l] for the flow
of air over an adiabatic flat plate with free stream Mach
numbers ranging from 2.54 to 4.2. The accuracy, computa-
tion times, and convergence properties of these MWR predic-
tions are examined.

In summary, the goals of this investigation are to
(1) carefully examine the behavior of several local shear-
stress models and (2) investigate certain computational
advantages of the method of weighted residuals and extend
the MWR to the analytical prediction of compressible, turbu-

lent boundary-layer flows.



2. INVESTIGATION OF TURBULENT SHEAR STRESS

In the calculation of compressible turbulent boundary
layers there are three major factors for consideration;
these are the governing differential equations of motion,
the mathematical method to solve these differential equa-
tions, and the physical model to yield the required turbu-
lent shear-stress information. The task of studying and
selecting a turbulent shear information model is considered

in this section.

2.1 Review of Turbulent Shear Information Models

The two basic types of turbulent shear information
models are global descriptions, which depend only on the
streamwise x-coordinate, the local descriptions, which depend
on both the x-coordinate and the normal y-coordinate. A
global shear model is an algebraic or differential equation

which relates an integral of the shear stress, for example,

=]

I f(x,y)t dy (2.1)
o

to the boundary-~layer integral parameters (f(x,y) is an
arbitrary function and the integration eliminates the y-
variation). A local shear model is an algebraic or differen-

tial equation relating shear stress, eddy viscosity, or



mixing length to the boundary-layer parameters and/or the
velocity field.
Boussinesq [2] first introduced the eddy-viscosity

concept in the form

aui ou.
T ey 1
uiuj 3 axj + axi (2.2)

where the eddy viécosity has a scalar value with directional
constancy. Hinze [3] has shown that a constant eddy vis-
cosity will vield satisfactory velocity profiles for the
free turbulent wake far behind a cylinder. In general,
however, eddy viscosity has a spacial variation, e.g. in
boundary-layer shear flows. It must also be recognized

that the form of equation (2.2) cannot be mathematically
correct if € is considered to be a scalar because a con-
traction of this equation yields

ou.

-TTurt = X
uju? 2¢e Bxi (2.3)

The right side of this equation is always zero for incom-
pressible flow (from the continuity equation) while the left
side can only be zero if there is no turbulence. Similar
arguments utilizing properties of symmetric tensors show
that tensors of second and third order are also unsatisfac-
tory representations for eddy viscosity; whereas, a fourth-
order tensor can satisfy all contraction and symmetricity
relations. Despite these objections the Boussinesq formu-
lation with a scalar eddy viscosity is often adopted in cal-~

culation procedures for turbulent flow. The major justification



for its use is the successful agreement often shown between
the calculated and measured values of the gross, mean pro-
perties of the flow.

For turbulent boundary-layer calculations the Clauser
[4] eddy-viscosity model is generally used in the outer or
law-of~-the-wake region; while various other models are
employed in the inner or law-of-the-wall region. The inner
and outer models are then patched together in a variety of
ways. The resulting predictions of mean velocity and tem~
perature profiles, integral thickness parameters, and skin
friction have been quite adequate for engineering purposes
except in flows with very sudden ché&nges in pressure gradi-
ent or flows near separation.

Some interesting differences in opinion can be found
over the last decade. In considering eddyéviscosity models,
Laufer [5] states that he is doubtful that a "correct"” for-
mulation exists in the inner or wall region. Conversely,
Clauser [4] said ten years earlier that the inner region
could essentially be considered as solved with a logarithmic
velocity profile and an eddy viscosity proportional to y.
Clauser then proceeded to consider what he called the much
more difficult problem of predicting the behavior of the
outer portion of the boundary layer. It should certainly be
noted that Clauser's comments were made in 1956 and Laufer's
in 1968, and that in 1956 much more was known about the

inner region than the outer region. It now appears that



with the results of Clauser’®s work, the outer region can
essentially be considered as solved, and attention should
be focused on the more difficult problem of predicting the
behavior of the inner layer; some consideration of this
point will be given later in this section.

Forsnes and Abbott [6] reported an extensive study of
over thirty global and local turbulent shear-stress models
for two~dimensional, incompressible, turbulent boundary
layers. Only a few of these models have been extended to
compressible flow: for example, Alber and Coats [7] ex-
‘tended their dissipation integral formulation; Cebeci, Smith
and Mosinskis [1l] modified their eddy—viscoéity expression;
and Herring and Mellor [8] reworked their effective-viscos-
ity hypothesis for the compressible regime. Forsnes and
Abbott [6] evaluated the incompressible versions of these
three turbulent shear models independently of any boundary-
layer prediction scheme by directly substituting experimen-
tal data into the shear models and comparing the outputs
from the various models. The main items of concern
in Forsnes and Abbott's [6] results are that the dissipa-
tion-integral values calculated from Alber and Coats' [7]
formulation are always much larger than the values calcula-
ted by five other dissipation-integral correlations and that
the shear~stress profiles calculated by both the Herring-
Mellor model and the Cebeci-Smith-Mosinskis model have

grossly unrealistic behavior in the inner region of the



boundary layer where y/8 is less than about two-tenths.
Forsnes and Abbott [6] then employed these three models in a
two~dimensional, incompressible, turbulent, boundarymiayer
prediction program, but the predictions of Cer 8§*, and 6
were very inaccurate. These inaccurate predictions were
certainly expected considering the grossly unrealistic
behavior of the input shear profiles.

In the light of Forsnes and Abbott's [6] earlier com~
parison of the dissipation-integral values and shear-stress
profiles calculated by the above three shear models, con-
siderably more work and understanding must be accomplished
before these models can be successfully incorporated into
an arbitrary boundary-layer prediction scheme. The rationale
for continuing this approach of understanding is: (1) the
Cebeci~-Smith-Mosinskis and the Herring-Mellor eddy-viscosity
models are among the best known and regarded shear models
in the turbulent boundary-layer community; and (2) the cal-
culations for two-dimensional, incompressible, turbulent
boundary layers by these two groups ranked in the best
third of the prediction methods as determined by the eval-
uation committee of the 1968 AFOSR-IFP Stanford Conference
entitled, "Computation of Turbulent Boundary Layers" [9].
These two eddy~viscosity models are presented and studied
in Sections 2.2 and 2.3, but first a policy of evaluation
needs to be clarified.

In evaluating turbulent shear models in the past, the



popular approach has appeared to beA; the better the cal-
culated values of 6%, 6, and Cf agree with»the experimental
data, then the better -the shear model used in the predic~
tion procedure must be. This implied evaluétion is often
made without any regard to the behavior of the calculated
shear-stress profiles. Of course, there is always the
implicit assumption that the shear~stress profiles are
correct if the integral parameters are adequately predicted.
This applied point of view has its chief defense in the
fact that the industrlal user is generally only interested
in the prediction of &%, Cf, and the separation point, and
he has little interest in the predicted behavior of the
velocity and shear-stress profiles. Further justification
for the applied evaluation approach may be that very little
measured shear-stress data are available for comparison

by any means.

There is an element of risk with this applied evalua-
tion, however. While the applied user is mostly concerned
with computational results, he nevertheless would like to
see existing turbulence formulations pushed to newer and
often more complex applications, such as, for example, com~
pressibility, boundary-layer control, low Reynolds number
effects, wall-roughness effects, etc. Typically such
extensions by the originators of the earlier shear—-stress
models (see, for example, [10] and [11l]) assume that the

new and more complicated phenomenon can be accounted for by
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deducing appropriate modifications of the details of the
previously successful turbulent shear-stress model in some
intuitively logical .manner. The continued suécess of such
a line of research, measured in terms of integral parameters,
would thus imply the soundness of the original assumption
for the shear stress. Presumably, only when a failure is
encountered with this chain of deduction would it be
necessary to examine the details of the assumed shear stress.
A different philosophy presents itself to the ihvesti-
gator who desires to accept the merits of one of the earlier
shear models and perform his own extensions or modifications
to suit some specific need. For the sake of saving time or
at least optimizing the effort, such an investigator would
like to select the "best" of the shear models available.
This is the philosophy adopted in this report and in keep-
ing with this approach, the eddy-viscosity models proposed
by Cebeci, Smith, and Mosinskis [1l] and Herring and Mellor
[8, 12] will be reviewed in some detail, including an

examination of the resulting shear-stress profiles.

2.2 Eddy-Viscosity Models

The defining equations for eddy viscosity are

T du

5= (v+e) 5y (2.4)
and

€ u_ arve (2.5)

where € is the eddy viscosity. The defining equations for
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the Prandtl mixing length are

T _ 2 |ou Ju
P - (“” ‘8 ” 5y (2-8)
and
- T _ o2 du jdu
T - a2 2 |2y 2.7

where £ is the mixing length. Combining equations (2.5) and
(2.7) yields a relation between eddy viscosity and mixing
length

~—' (2.8)

Prandtl originally argued that for the inner region of the

boundary layer (denoted by subscript i)

Q/i = Kly (209)

where Kl is a constant for fully~-developed turbulent flow.
Van Driest [13] modified Prandtl'’s argument for mixing
length to account for the viscous sublayer by consideration
of a Stokesian flow over an oscillating flat plate. Van
Driest made the analogy between the Stokesian flow and the
fluctuating turbulent fluid over a stationary flat plate,
resulting in the introduction of a damping factor into

equation (2.9) which becomes

L; = Ky yll-exp(-y/p)] (2.10)

where A is a constant for a given streamwise location. Com-
bining equations (2.8) and (2.10) results in

w2 20 2 |au
e; = Kl vy [l~exp (~y/A)] 5y

(2.11)
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Equation (2.1l). was developed by Van Driest for incompress-
ible flow over a flat plate with zero pressure gradient.
Cebeci, Smith, and Mosinskis [l] have extended Van Driestis
development to encompass compressible flows with pressure

gradients. Their final result is

w2 2 Tw d 2 au
o= 2 ] e |- (e P])
L (2.12)

In the outer region of the boundary layer (denoted by

subscript o), Clauser [4] heuristically derived the result
U_ &% (2.13)

for incompressible, equilibrium turbulent boundary layers
where K2 is a constant. Equation (2.13) has been modified

by the intermittency factor given by Klebanoff [14] as
Q = 3 {l-erf(5(y/6 - 0.78)1} (2.14)

where Q is the intermittency factor. Clauser's model has
been further modified by Herring and Mellor [8] by replacing
8* with 6; for compressible flows, where the kinematic

displacement thickness

e}

8% = f (1-u/u,) dy (2.15)
O

is used to account for the kinematic character of the eddy
viscosity. Cebeci, Smith and Mosinskis [1] also have

approximated equation (2.14) by
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6. "1
Q= [1+ 5.5(y/8) 1

The complete, composite eddy-viscosity model used by Cebeci,

Smith, and Mosinskis [1l] is given in the inner region by

15,2
e, = k% y2 | 1-emp | - =L IlV-+QEX2 du (2.12)
iT ™Y P 26v i p | dx p 3y )
and in the outer region by
6 -1
= %*
€5 K2 Ue 6K [L + 5.5(y/68) "1 (2.16)

where Kl = 0.40, K, = 0.0168, and 6 is defined as the dis~-

2
tance from the wall to the point where u/Ue = 0.995. The
dividing point between the inner and outer region of the

boundary layer is defined by requiring the eddy-viscosity
function to be continuous. Thus, equation (2.12) is used
for 0 <y < Yer and equation (2.16) is used for Yo S Y < 8
where Yo is defined as the value of y where €; = €4+

Figure 1 graphically depicts the joining of the two regionms.

€ i
"“""Ei
* ——€
K,U_§ == — —
2°e’K IR
N
N
N
AN
N
N
~
~
0 \\% ]
0 vy Y

c
Figure 1l: Eddy-Viscosity Model of Reference 1
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Herring and Mellor develop their effective-viscosity

model in References 8 and 12. The defining equations are

T au TToT
—_—= Y = = U’V 2.17
P oy ( )
and
T _ u
5 Vo 5y (2.18)

where Vof is the effective viscosity. Utilizing physical

and dimensional arguments they obtain

v
—%E =¢(x) , X = %? YT/p  in the wall layer (2.19)
and
Vef K .
ﬁ;§§ = 0(X) , X = ﬁ;%§ vYt/p in the defect layer (2.20)

where é and ¢ are, as yet, undetermined functions and

K = 0.41 is the von Karman constant. With the assumption
that an overlap region occurs between the wall and defect
layers and Clauser'’s [4] assumption that Vef is constant in
the defect layer, Herring and Mellor obtain the functional
form for ¢®. Once again using the overlap region assumption
with the law of the wall and some of Laufer's [15] data (to
specify an empirical constant), they determine the ¢ function.
Figure 2 displays these functions. Herring and Mellor then
unite their composite model into a single equation by the

matched asymptotic expansions (Van Dyke [16]); this is
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Figure 2: The Effective-Viscosity Functions of Herring
and Mellor [8]
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achieved. by adding the inner model to the outer model and
subtracting the common'asymptdte to obtain their final,

resultant effective-viscosity model,

Vv
. §f = Uvs* o(x) + ©(X) - X (2.21)
e K e K

Hereafter, equation (2.21) will be referred to as the
HM effective~ or eddy=-viscosity model for Herring and
Mellor, and equations (2.12) and (2.16) will be referred to
as the CSM eddy-viscosity model for Cebeci, Smith and
Mosinskis. There is a decided difference in the application
of these two models. If values for ul(y), §%§XL , and T (y)
are known from experimental measurements or from the calcu-
lations of a prediction scheme, then the CSM model is an
explicit equation for the eddy viscosity; while the HM model
is an implicit equation for effective viscosity which must
be solved by iteration, since the terms on the right-hand
side of equation (2.21) contain X and x which are functions
of the shéér stress. In a boundary-layer calculation pro-
gram where the shear-stress profile must be calculated at
many streamwise locations, the iterative procedure required
by the HM model could cause a considerable increase in

computer time.

2.3 Shear-Stress Calculations in the Literature

Before shear-stress profiles are calculated by the CSM
and HM models, it will be instructive to examine the calcu-~

lated shear-stress profiles of previous investigators.
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Predicted shear-stress distributions are rarée in the litera-
ture, but shear profiles have been obtained from three
separate investigations. Perhaps some insight on the behavior
to expect of calculated shear profiles can be gained from
these three investigationse

Dvorac [17] calculated the shear~stress profile on an
incompressible flat plate at x = 0.937 meters for flow case
number 1400 of the Stanford data [18]. By using an eddy-
viscosity model, which is briefly presented in Reference 9,
he obtained the result shown in Figure 3; the interesting
feature of this graph is the anomalous behavior near the
wall., The shear-stress curve should approach its maximum
value at the wall with a slope normal to the wall (as seen
by evaluating the momentum boundary-layer equation at the
wall). Dvorac used a diffusion equation on the maximum
eddy viscosity in the outer region to obtain the results of
Figure 3, but when he did not use this diffusion equation,
he predicted an even larger (T/p)max of 2.14. The use of
the diffusion equation was mentioned to emphasize that
Dvorac has already attempted to improve his shear-stress
calculations.

Forsnes and Abbott [6] also calculated the shear-stress
profile for flow 1400 of the Stanford data [18] at x = 0.937
meters. They used the experimental velocity profile and
derivatives obtained from it (by an averaged linear-slope

scheme) to calculate the shear-stress profiles with several
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Figure 3: Dvorac'’s [17] Calculation of Shear Stress at
X = 0.937 Meters for the Zero Pressure-
Gradient Flow 1400
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different eddy~viscosity and mixing-length models. Some 6f
their results are shown in Figure 4; it is important to
realize that they did not use the boundary-~layer equations
or any prediction program to obtain the results in Figure 4.
They simply substituted experimental data and their deriva-
tives into shear models which were reported by the several
authors. Figure 4 shows that the shear-stress distributions
are very poorly behaved near the wall for all four shear
models, while the shear-stress curves for two of the models
are unacceptably high in the outer region of the boundary
layer*. It is not the intent of Figure 4 to imply that it
is impossible to predict correct shear-stress profiles with
these four shear models; instead, it might imply that the
shear models are unusually sensitive to their input velocity
and derivative profiles. The sensitivity of a particular
model, the CSM model, will be discussed later in Section
2.6,

Another investigation for which shear-stress profiles
are available is that of Cebeci and Smith [23]. Although
Reference 23 does not explicitly contain the shear-~stress
values, it does contain tabular values of the variables s+

3
and ch for the Stanford [18] data case 4400. When these

*Admittedly? the magnitude of these curves depends on the
method of obtaining the velocity profile derivative; how-~
ever, since the velocity profile slope is the same for
each curve, relative variations are most significant.
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variables are combined properly, the shear-stress values are

obtained, since

(1 + eh) F'_ = Re 2 _t_ (2.22)

b4 pUi
Calculations of et and ng were also ésoperatively supplied
by Cebeci and Smith for several other incompressible, turbu-
lent boundary-layer flows. However, Cebeci and Smith do not
directly use the CSM eddy-viscosity model in their pre-
dictions, since the direct use of their model led to oscil-
lations in the calculated values of §* and Ce and caused
their iterative procedure to diverge; consequently, they
use an averaging or smoothing technique on their eddy-
viscosity profiles to prevent the oscillations and diver-
gence. Figure 5 depicts the calculated shear-stress
profiles at three different streamwise locations for flow
case 2100 of the Stanford data [18]. This case is a boun-
dary layer on a large airfoil-like body. The profile at
X = 2,84 feet is in a mild favorable pressure gradient; the
one at x = 19.84 feet is in a strong adverse pressure gra-
dient; and the profile at x = 26.11 feet is within a few
inches of separation. All three shear-stress profiles are
smooth and properly behaved. A comparison of the calcula-
tions of the global, boundary~layer parameters in Reference
[9] shows that the predictions of 8%, 6, and Ce by Cebeci

and Smith are quite good for this flow case. As one would

expect, well~behaved shear~stress profiles generated good
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predictions for the global parameters.

Figure 6 displays the shearwstress>profiles from the
Cebeci-Smith boundary-layer calculation program for flow
case 2400 [18]. This is a flow with a moderate, adverse,
equilibrium pressure gradient which is abruptly decreased
to zero and then allowed to relax to this new equilibrium
pressure gradient of zero. The profile at x = 4.917 feet
is near the end of the adverse pressure-gradient region
while the one at x = 7.2 feet is well into the zero pressure-
gradient region. Thus, the profile at x = 7.2 feet should
have a slope of zero at the wall, but the calculated pro-
file does not. Another anomally exhibited by both of the
calculated profiles is a sudden jump very near the wall so
that in general the calculated shear-stress profiles for
this flow case are rather ill-behaved. An examination of
the calcd&aticns in Reference 9 reveals that for this flow
case Cebeci and Smith predict §* and 8 very well but do
rather poorly on Ce. As one would expect, the unrealistic
shear distributions led to inaccurate skin-friction calcu-
lations, while the boundary-layer thickness parameters are
apparently less sensitive to the shear-stress inaccuracies.

Figure 7 shows two shear-stress distributions calcu-
lated from Cebeci and Smith's results for flow 4400 [18],
which is a boundary layer in a strong adverse pressure
éradient@ Both of these profiles have a large unrealistic

jump at y/8 * 0.035 which is undoubtedly in the zone of
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[23] for Flow Case 2400



Figure 7:

25

[~ OC wall values

0 0.2 0.4 0.6 0.8 1.0 1.2
y/§

Shear-Stress Calculations from Cebeci and Smith
[23] for Flow Case 4400



26

application of the inner-~region model. in view of these.
shear-stress profiles, one might expect very inaécurate
calculations of the global parameters, but Reference 9
shows that the Cebeci-Smith calculations of é*, 6, and Cf
are nearly perfect — passing through almost every experi-
mental data point. In fact all seventeen investigators who
predicted flow 4400 in Reference 9 did extremely well.

The reason Cebeci and Smith were able to correctly predict
the global parameters with such poor shear-stress profiles
is probably because the turbulent shear information terms
in the governing equations are of only secondary importance
for this flow case. Further substantiation of this claim
is seen in the work of Forsnes and Abbott [6]. They
developed a first approximatién to the solution of the
governing equations usiﬁg the method of weighted residuals.
This first approximation contains no turbulent shear infor-
mation, since all terms containing T are identically zero.
Forsnes and Abbott'’s first approximation calculations for
flow 4400 are given in Figure 8 and show remarkably good
agreement with experiment. Additional first-approximation
or "zero-physics® predictions are given in Reference 6
which shows comparable success for several of the flow
cases in Reference 18. These "zero-physics" results indi-
cate that the turbulent shear information terms may be of

secondary importance for certain classes of flows.
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2.4 - Shear-Stress Calculations.in the Fresent Investigation

]

Now that the shear-stress calculatiocns from several
previous investigations have been examined, the present
investigation can proceed with some calculations of its own
for compressible, turbulent boundary layers — the task which
was originally proposed in Section 2.2 where the CSM and HM
eddy-viscosity models were presented in detail. These two
models will be examined by calculating the shear-stress
profiles for adiabatic, turbulent, compressible data cases.
The inputs to the eddy-viscosity models are the experimental
velocity and Mach-number profiles and the velocity-profile
" derivative calculated by the weighted central finite-dif-
ference scheme derived in Appendix A. Other equations
necessary to calculate all the variables occurring in the

eddy-viscosity models are: the perfect gas law
p = PRT (2.23)

Mach number for a perfect gas

M = u//'-Y-_R—'f (2@24)

Sutherland’s viscosity law

3/2 T_+ C
iu_z T?‘ _._._.__§ = (2.25)
r X
where C = 192°R, T_ = 492°R, and u_ = 3.59 x 107/ slug/ft~

sec., The present calculations for the shear~stress profiles
using the CSM and HM eddy-viscosity models are shown in

Figures 9, 10, and 11. The calculated velocity derivatives
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are also piottéd to show their smooth nature near the wall
where the shear-stress profiles are erratic. For a com-
parison with these calculations, the correct gqualitative
behavior of the T/TW function near the wall is sketched in
with a solid line. Figures 9 and 10 exhibit the calcula-
tions at two different Reynolds numbers for approximately
the same Mach number while Figure 11 shows the calculations
at another Mach number. It is seen that the results in all
three figures are guite similar. Both the CSM and HM
models generate erratic behavior in the shear-stress profiles
near the wall, and the CSM shear-stress profile decreases
to zero faster than the HM profile in the outer region of
the boundary layer. The faster descent of the shear-stress
profile calculated by the CSM model can be explained in the
following manner. An intermittency factor is built into
the CSM eddy-viscosity model to account for the intermittent
character of the turbulent boundary layer. The intermit-
tency factor is employed to decrease the outer eddy-viscosity
values as y increases. The HM model does not use an inter-
mittency factor; it employs Clauser's [4] theory of a con-
stant eddy viscosity in the outer region of the boundary
layer. Although Mellor [12] noticed the shortcoming of the
Clauser theory, Mellor felt that this shortcoming would not
appreciably affect the boundary-layer calculations.

Before an attempt is made to use either the CSM or the

HM eddy-viscosity model to predict compressible, turbulent
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boundary layers, it is considered desirable to improve the
shear-stress profile- in the inner or wall region of the
boundary layer. There seems little to choose from, between
these two eddy-viscosity models, since both have proven to
yield accurate predictions of the global boundary-layer
parameters in Reference 9. However, two analytical factors
warrant a preference for the CSM eddy~-viscosity model:

(1) it contains an intermittency factor which creates the
qualitatively correct reduction of eddy viscosity in the
outer region, and (2) it is an explicit equation for eddy
viscosity which can thus be solved without iteration. Two
other reports lend credence to the preference of the CSM
model. Bankston and McEligot [25] made numerical predic-
tions of heat~transfer rates in the entry region of circular
ducts using several different eddy-viscosity and mixing-
length models. They found the best agreement between cal-
culations and experimental measurements with a version of
the Van Driest mixing length, which is included in the CSM
model. Martellucci, Rie;, and Santowskii [26] calculated
total-temperature and pressure profiles over a cone at Mach
eight using three different eddy-viscosity models. In gen-
eral the calculations using the CSM model agreed slightly
better with the data than the calculations using either the
Santowskii model or the Patankar-Spalding model. Conse-
quently, further consideration in this report will be res-

tricted to the CSM eddy-viscosity model. A major effort of
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the present investigation will be directed toward improving

the inner~region bshavior of the CSM shear-stress profile.

2.5 Analysis of the Anomalous Shear-Stress Behavior

For a first attempt at understanding the shear-stress
problem in the wall region, it is considered desirable to
find out what velocity profile will give the physically
correct shear-stress distribution when that velocity pro-
file is substituted into the CSM eddy-viscosity model. The
method devised to answer this question will now be des-
cribed. The correct shear-stress profile is assumed to be
the solid line (Figures 9, 10, and 11) in the inner region
plus a faired curve through the points marked with open
circles in the outer region. The equations required for
the property variations are (2.23), (2.24), (2.25), and the
Crocco relation relating the temperature profile to the

velocity profile,

T/T, = 1+ (T_/T_ - 1) w/U_ + (T /T - 1) T_/T_(u/U_)?
(2.26)
Equivalent forms of equation (2.26) have been derived by
Crocco [27] and Van Driest [28]. The Crocco relation has
proven to agree quite well with experimental data for the
flow of air over a flat plate; e.g. see Bushnell, Johnson,
Harvey, and Feller [29!. To make the description of the
calculation procedure more easily understandable, the work-

ing equations will be represented in functional form. The
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CSM eddy-viscosity model becomes

e =f. (u, — , K.) (2.27)

where fl is a two layer function given by equations (2.12)

and (2.16). Rearrangement of equation (2.4) yields

57 = f,(e,u,1) (2.28)
where
_ T
fZ(SyU,T) = p—(\)—+éT (2929)

Admittedly fl and f2 are functions of many other variables,
but they will be taken as parameters, and the three argu-
ments shown for each function are taken to be the only de-
pendent variables once the equations for the property varia-
tions have been employed. The constant Ky in equation (2.27)
has been included as an argument for reasons that will

become apparent later, but for the present K, = 0.40 will

1
be used. Equations (2.27) and (2.28) are readily solved.

The physically correct shear-stress distribution, T(y)} is
substituted into equation (2.28); then equations (2.27) and
(2.28) become two equations in the two unknowns, u(y) and
e(y). At a given x-location these equations are first-order
ordinary differential equations for u and algebraic equations
for €. These equations are solvable by Picard's method. A
first guess, say u, is made for the solution of ul(y):

when ul(y) is inserted into the right-~hand side of equa-

tions (2.27) and {(2.28}), these equations become two
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)

. ; . ; du iy .
algebraic equations in two unknowns, mgmlw and e(y) which

are readily solvable. The Q%éll profiie ig integrated to
vield a second approximation, uz(y); then uz(y) takes the

* previous role of ul(y), and the process is continued until
convergence is obtained. Approximately twenty iterations
wexre generally required to obtain convergence to six sig-
nificant figures of u when ul(y) was taken to be the experi-
mental velocity profile. Upon convergence the u(y) profile
is the desired one. When this profile is substituted into
the CSM eddy-viscosity model, a physically correct shear-
stress distribution is obtained.

This iterative procedure has been applied to several
sets of experimental data measured by Coles [24] and Matting,
Chapman, Nyholm, and Thomas [30] for the compressible flow
of air over an adiabatic flat plate. The solid line
curves in Figures 12 and 13 show the results of these cal-
culations which are compared with experimental data. Fig-
ure 12 shows one of the best agreements between calculation
and experiment while Figure 13 shows the worst. The best
agreement occurs at the lowest Mach number, and this trend
in general occurred for all the data that was examined;
this trend with Mach number will be examined later in this
section.

In the application of the CSM model, poor behavior of
the shear-stress profile occurs only in the inner region of

the boundary layer where equation (2.12) is utilized;
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Figure 12: Velocity Profile Calculated by the Iterative

Procedure on Eddy Viscosity with K, = 0.40
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Procedure on Eddy Viscosity with K, = 0.40
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therefore, this equation will be examined in detail. 1In
the derivation of equation (2.10), Van Driest [13] showed

that the constant K, corresponds exactly to the constant K

1

in the universal logarithmic velocity distribution in the

1

fully turbulent region of the boundary layer

+ 1 +
u = 'E':'L-' ny + K3 (2.30)

Equation (2.30) has been found to agree very well with

experimental data for incompressible flow using K, = 0.4,

1
but Coles [24] and Van Driest [28] have shown that equation
(2.30) does not agree with compressible flow data nearly as
well as it does for incompressible data. Consequently, the
constant value of Kl = 0.4 in the mixing-length expression
is questionable for compressible flow. The same calcula-
tions as before were made to determine what velocity pro-
file will give a correct shear-stress profile using the

CSM model; only this time the value of Kl was optimally
adjusted until the velocity profile which agreed best with
the experimental data was calculated. These calculated

velocity profiles with an optimum value of K, are shown in

1
Figures 14 and 15 by the broken lines where they are com-
pared with two sets of experimental data and the corres~-
ponding calculations using Kl = 0.4 (solid lines). These
same calculations were performed to find the optimal values
of Kl for several other data sets measured by Coles [24] and
Matting, et al. [30], and these results are plotted for Kl

versus Mach number in Figure 16. Although possibilities of
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Figure 16: Variation of the Optimal Values of Ky
with Mach Number
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trends for K. in the parameters Cf, Rexi Ree; etc. were

1
explored, none appeared except the one shown in Figure 16.
Although a definite trend of decreasing Kl with increasing
Mach number exists,; thé large degree of scatter in the cal-
culated points prohibits the discovery of an accurate
correlation function for Kl in compressible flow. Still a
least-squares parabolic or linear fit to the calculated
points should make a significant improvement over the K, =

1

0.40 constant value.

2.6 Sensitivity of the CSM Eddy-Viscosity Model

Shear-stress profiles have been calculated by the CSM
eddy~viscosity model, and the erratic behavior of these
profiles in the inner region has been noted. An iterative
procedure has been developed to remove the erratic behavior
by generating velocity profiles which are physically com-
patible with the CSM model. Physically realistic shear-
stress profiles resulted, but little light was shed on the
actual cause of the erratic behavior. That is the purpose
of this section.

Recall the significance of Figure 12. The data points
are the experimentally measured velocity profile, which,
when substituted into the CSM model, generates a very
poorly behaved shear-stress profile in the inner region.
The solid line in Figure 12 is the iterated velocity pro-

file with K, = 0.40, which,; when substituted into the CSM

1

model, generates a physically correct shear-stress distri-

bution. The fact that two velocity profiles so nearly the
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same yield shear-stress profiles so different implies that
the CSM eddy-viscosity model is very sensitive to its input
velocity profile. This sensitivity in the inner region can
be easily analyzed with a simple example. Suppose there is
a (oy) error in the value of y to be substituted into the
inner region eddy-viscosity model, equation (2.12), where ¢
is the fractional error. Then the fractional error in the
' 2

y2 factor in equation (2.12) is 20 + ¢, so a 10 percent

error in y causes a 21 percent error in the y2 term. If in
du
oy
value, then this error enters as a multiplicative factor

addition there is a positive 10 percent error in the

with the 21 percent error in y2, and the total contribution
is an error of 33.1 percent in the eddy viscosity e. For
the data case of Figure 12 the edge of the inner region
occurs where u/Ue = 0.75; at this péint ei/v = 90.6; thus,
from equation (2.4) it is seen that ¢ %% is about 99 percent
of the value of 1/p so that a percentage error in & causes
approximately the same percentage error in 1. With this
error analysis in mind, it is seen in Figure 12 for

u/Ue < 0.75 that there are differences of the order of 10
to 50 percent in the y values of the two velocity profiles
at a given value of u/Ue° This error is then compounded
when these y values are substituted into the equations for

5 and 1, and drastically different shear-stress profiles

are the result.
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2.7 Summary

In this section a brief review of some pertinent lit-
erature on turbulent shear information modelinq is presented,
and some available shear-stress calculations are examined.
An anomalous behavior of the shear-stress profile is noted,
and avenues of emphasis and approach are outlined and
followed. Calculations of shear stress are made by two of
the best known and regarded eddy-viscosity expressions,
and these calculations displayed a very unrealistic behavior
in the inner region of the boundary layer. The cause of
this is explained by an error analysis which points out the
‘sensitivity of an inner region eddy-viscosity expression
to‘the velocity profile. A method is devised to correct
this unrealistic behavior, and, furthermore, a correction

of an inner region eddy-viscosity model is recommended.
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3. BOUNDARY-LAYER PREDICTION ANALYSIS

3.1 Introduction

One of the purposes of this work is the development of
a prediction procedure for two-dimensional, compressible,
turbulent boundary layers. In Section 2 physical shear-
stress models were examined, and a particular model was
developed so that it would yield well-behaved shear-stress
distributions. This analysis was done entirely independent
of any mathematical technique for solving the boundary-layer
equations. In this section the governing equations are pre-
sented and a mathematical solution technique is formulated
which will be completely independent of any physical shear
model. The distinct separation of the analyses for the
solution technique and for the physical shear model allows
a clearer understanding of the difficulties caused by each
phase of the overall prediction program. Finally in Section
4 the shear model and the solution technique will be com-

bined into a prediction program.

3.2 Boundary-Layer Equations

The derivation of the appropriate equations has been
documented in a number of references. For example,
Schubauer and Tchen [31] start with the two-dimensional,

compressible, Navier-Stokes equations and substitute the
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sum of a time mean and a fluctuating quantity for all the

instantaneous variables, for example,

z. =2 + z° (3.1)

where Z; 0 is the instantaneous value of a physical variable,
z' is the fluctuating component of Zin? and z is the time
mean component of Zin° They then take the time average of
the resulting equations and perform an order of magnitude
analysis which results in the following governing equations
for the mean properties of a two-dimensional, compressible,

turbulent boundary layer:

Continuity:
op , 3_ 2 oy o
3¢ * 3x (PW) *+ 5y (ov + pTVT) =0 (3.2)
X-momentums
) ) 2 3 _ _dp
3¢ (Pu) + 5% (pu™) + 37 (puv) = - ==
Q___ a_u - ? L — 1
+ 3y (u 5y pu'v up ‘v’ (3.3)
y~momentums:
. 9p _ 3 02y _
5y ~ 3y (pv' ™) 0 (3.4)
Energy:
3 9 9 - 9 oH _ =
g (PH) + 5% (pHU) + o (pHV) = 7 (u 5y ~ PV H
3 (C_T)
- DTy?T a_ 1 P —ov ou
ptv »H] + 5y V[Pr 1) v 5y + pufv 5

(3.5)
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Integration of equation (3.4) vielids

P = v«e - PV
or
. 2
2 vt i
P = Py (3 - My R
U
| e Ve
since 2
2 pe Ue
M =
e YPg

(3.6)

(3.7)

(3.8)

For small turbulence level (v'z/u2 << 1) and for Me of the

order of one,

(3.9)

Equations (3.2), (3.3), (3.5), and (3.9) can be combined

to yield the usual boundary-layer equations for the steady

mean flow of a two-dimensional, compressible, turbulent

boundary layer:

Continuity:
%E (pu) + 5= (pv + p™v")
Momentum:
pug—%+(pv-'r5"?f"_)%=—g—§-
Energy:

oH

X

pu = + (pv + p'v?) %% = %§ g% [1 +

<|m

(3.10)

(3.12)
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where
€ %% = - utv? (3.13)
A _
s % = - pv'H" (3.14)
P
C ¢
pr = P (3.15)
£ T Tk
T = o(v + ¢g) %; (3.16)

These equations may also be found derived in equivalent
forms by Cebeci and Smith [32], Herring and Mellor [8], and
Schlichting [33}.

At this point, the streamwise gradient of the apparent

normal stresses %§ (pu'2

- pv‘z) have been assumed negligible
as is usually done; there has been considerable discussion

on the validity of this assumption for a flow near separation.
For example, Goldberg [34] shows that the apparent normal
stresses may not be negligible compared to the apparent

shear stress for flows approaching separation; furthermore,

in the discussion at the Stanford conference on turbulent
boundary layers [9], V. A. Sandborn states that the apparent
shear~stress term in the equation of motion was found to be
negligible but that the %g was not negligible for his experi-
mental investigations of turbulent separation. Consequently,
since it appears that the governing equations presented here
are not completely valid for flows near separation, this
analysis may not apply to the investigation of turbulent

separation,
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The appropriate boundary conditions for equations

(3.10), (3.11), and (3.12) are

‘ U{Xo‘ﬁy) = uo(y} (3@l7a)
u{x.,0) =0 (3.17b)
2im u(x,y) = U_(x) (3.17¢c)
e

y*>e
v(x,0) =0 (3.174)
H(xc.y) = Ho(y) (3.17e)
H(x,0) = HW or %E (x,0) = [ggq (3.17f)

Yy Yy
and

Lim H(x,y) = H (%) (3.179).

y>e

Additional equations are needed for the property varia-
tions. The relations used in this investigation are the

perfect gas equation of state

p 3 pRT (2923)

and Sutherland'’s viscosity law

o {%]3/2 E%_:_:_; (2.25)
Hy r
where
C = 192°R
T = 492°R
r
H_ = 3.59 x 10“7 slug/ft-sec
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Also, the following values of the Prandtl number and the

turbulent Prandtl number are assumed (for air):

Pr

0.72 (3.18)

Prt = 1.0 (3.19)

Although these property variation equations have been used
in this work, any available equations for the equation of
state, viscosity, Prandtl number, or turbulent Prandtl num-
ber could be easily incorporated into the ensuing analysis.
Perhaps some discussion is in order at this point on the
selection of a turbulent Prandtl number of unity.

Figures 17 and 18, taken from Cebeci [35], are offered
as justification for the use of Prt = 1.0. Due to the
large extent of the experimental scatter in these figures,
Prt = 1 was thought to be a suitable approximation until
further experimental investigations of the turbulent
Prandtl number have been undertaken. Cebeci is currently
seeking a correlation equation for the turbulent Prandtl

number; and, as mentioned previously, such a correlation

could be easily utilized in the present analysis.

3.3 Mathematical Solution Technique

Mathematical methods for the solution of boundary-layer
problems have historically been classified into two major
divisions; integral methods and finite~difference methods.

W. C. Reynolds [39] states, "The chief virtue of integral
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Prandtl Number
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methods for turbulent boundary layers lies in the impliéit
and global manner- in which the effects of turbulence can be
incorporated. A disadvantage of integral methods often
cited by users of differential methods is the difficulty of
extension to Wider classes of flows. The avoidance of
local turbulence assumptions offsets this disadvantage in
the view of many users of integral methods.” The primary
objections wusually raised against finite-difference solu~
tions are long calculation times and difficulty in obtain-
ing mesh restrictions to assure stable solutions, but to
the users of finite-difference methods, these disadvantages
are offset by more exact solutions of the governing partial
differential equations and by the extendability to a more
general, wider, or more complicated class of flows.

In this report the Method of Weighted Residuals (here-
inafter abbreviated as MWR)* is advocated as retaining many
of the advantages of both the integral and finite-difference
methods while eliminating many of their disadvantages. The
MWR solution technique is presented in detail in Section 3.4
as related to the solution of the compressible, turbulent

boundary-layer problem.

E3

The MWR is an N-parameter approximate solution technique
for solving a set of partial differential equations,

where N is the order of the approximation. For a detailed
discussion of the basic MWR solution technigue, see Bethel
and Abbott [40] and Koob and Abbott [41].
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For the past several years considerable differences
of opinion have occurred in the literature in attempts to
categorize the MWR as either an integral or finite-difference
method; for example, Spalding [42] combines the MWR with
finite-difference methods into a category he calls complete
theories. However, Reynolds [39] calls the MWR an integral
method while Abbott, Deiwert, Forsnes, and Deboy [43] point
out many similarities between the MWR a;d finite~difference
methods. Perhaps the MWR has sufficient unique characteris-
tics that it is in a class of its own and consequently
- defies the usual methods of categorization.

Two complaints which have often been brought against
the MWR are: (1) the MWR cannot be easily extended to cal-
culate complex flow situations and (2) the MWR requires a
multitude of matrix inversions which can ultimately lead to
the inversion of a singular matrix, implying a hidden singu~-
larity in the mathematical formulation. However, in the
past decade many successful applications of the MWR have
made the validity of these complaints doubtful. The follow-
ing list is a sample of the applications of the MWR over a
wide range of flow conditions: Bethel and Abbott [40] cal-
culated laminar flows with pressure gradient and predicted
separation points; Ero [44] calculated the shock~induced,
laminar, compressible flow over a flat plate; Koob and
Abbott [41] calculated the laminar time dependent flow over

a suddenly accelerated flat plate; Forsnes and Abbott [6]
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calculated the two-dimensional, incompressible, turbulent
boundary layer with pressure gradient; Nielson, Goodwin,
and Kuhn [45] calculated the laminar and turbulent shock-
wave interaction problem in two-dimensional, axisymmetric
flow; and Bossel [46] calculated incompressible, laminar
boundary layers with suction. While the number of matrix
inversions can create difficulties in a specific a;alysis,
in the formula;ion of the MWR for the flow problems that
have been examined by Professor D. E. Abbott and his students
at Purdue University, it is necessary to perform only one
matrix inversion for the entire calculation of a flow case;
thus, this inversion is achieved, once and for all, at the
start of the flow calculations, and no further matrix
inversions are required as the calculations proceed down-
stream. It is theoretically possible that the matrix to be
inverted could be singular for a specific problem formula-
tion, but no such difficulty has been encountered in the
work at Purdue University.

In the application to turbulent boundary layers for
low orders of approximation, N < 4, the MWR has the advan-
tage of the integral methods in that it can use global
inputs, such as semi-empirical equations for the dissipa-
tion integral and other weighted integrals of the shear
stress (for the turbulent information terms), but an eddy-
viscosity formulation can also be used for all orders of

approximations (0 < N < «)., Thus, the MWR has the added
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flexibility of allowing the user to apply either.global or
local turbulent shear inputs. Still another advantage is
short machine calculation times; for example, in the work
of Forsnes and Abbott [6] and Deiwert and Abbott [47] it
was found that a second approximation gave good results
while requiring only about one-third of the computer time
used by finite-difference methods. Nevertheless, the MWR
has the advantage of being able to obtain a more exact
solution of the governing equations for larger N; of course,
the required computer time would increase considerably.

With the selection of a solution technique having been made,
the next step is the application of the MWR to the govern-

ing equations of Section 3.2.

3.4 Application of the MWR Solution Technique

Strictly for computational convenience the Dorodnitsyn
transformation was modified to apply to the compressible
form of the equations. The transformation as modified is

given by:

Dependent variables:

c
=

u
u* = — v =
§)
e

X x = H
N H i (3.20)

mcq<
H
o

Property variables:

p* = p/pe p* = u/ue (3.21)
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Independent variables:

p U p U U L
1 e e e o Y
E == f dx N =Y —— —_ (3.22)
L prUr prUrL Vr
Other variables, defined for convenience, are
n(peUe)
w* = v¥ + u¥ R (3.23)
p U
e e
B =1+ % (3.24)
and
pV = pv + p'v’ (3.25)

The transformation of equations (3.10), (3.11), and (3.12)

yields
Continuity:
2 (p*u*) + 3_ (p*w*) =0 (3.26)
& 9N °
Momentum:
§)
Ju* Ju* € 2
*11% L IRE = - XLk
pru* =7 + oW 5o U, (1 p*u*”)
+ EE 9 (U*B éEi} (3.27)
M. 9N an
Energy:
He
x®
p*u* 8H + p*w* H P R— p*u*H* g
9 an
e
] He u* e Pr oH¥*
| W, Pr “v‘rr]“an
r t
2
H U
e il - 1| e g« Ju*
+ . u (l Pr] He uk e (3.28)

To solve the above equations an historically proven
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MWR formulation is used for the momentum egquation. For the
treatment of the energy equation, the method developed by
Ero [44] for shock—induqed laminar flow over a flat plate was
considered. Although this method generated a simplified
system of equations solvable with short computer run-times
for Ero's problem, it created a complicated formulation re-
quiring long computer times for the present problem which
involves pressure gradient and turbulence terms. Consequently,
an entirely new treatment of the energy equation has been
developed. This new treatment is quite analogous to that of
the momentum equation and is therefore easily understood in
concept and application once the handling of the momentum
equation has been mastered. Thus, directly parallel analyses
for the momentum and energy equations are developed below.

In following the historically proven formulation, the
continuity equation (3.26) is multiplied by a weighting
function hi(u*), to be specified éiter, and the momentum
equation (3.27) is multiplied by aﬁé , and the resulting

two equations are added, yielding

9 i an i i Ue
+ e 3 L*B ou* h’(u*) (3.29)
ur an on i °

Similarly, the continuity equation (3.26) is multiplied by

a weighting function fi(H*)’ to be specified later,; and the
af.
energy equation (3.28) is multiplied by aﬁ% ; and the
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resulting equations are added,; yielding

9 (p*u*f,) + 9 {(p*w*f,) = - ffp*u*ﬁ* e
o0& i on i i Hy
: H * - ) *
R e AR
noy oML r.) an
2 -
M U +
& % A e e W
+ W M [l Pr] He u 5T (3.30)

Equation (3.29) is integrated over the domain of interest
(0,») of the variable 71, and the independent variables (&,n)
are transformed to (&,u*) so that in reality all integra-
tions are taken over the interval (0,1) in u*, thus elim-
inating the problem of integration over a semi-infinite
interval. For details of this transformation, see Appendix
C of Koob and Abbott [41]. For convenience a new variable

is defined

-1
_ {ou*
o - (322) 3.3

The integrated form of equation (3.29) becomes

U 1
d [ b o*u*edu* - —& [ m' (1 - o*u*?) odu*
dg i Ue i
(@] (o]
u hf(O)p *u ¥ u . p*u*Bh? du*
I o w e T [ o =0 (3.32)
I ; by ) 0

by requiring hi(l) = 0.
Equation (3.30) is now handled in a very similar
manner; it is integrated with respect to n, and the inde-

pendent variables (£,n) are transformed to (£,H¥*) so that
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in reality all integrations are taken over the finite
interval (Hw*’l) in the variable H*., For convenience

another new variable is defined

-1
[aH*] (3.33)

an

and the final resulting equation is

1 H 1
d 3 =
Jr f p*u*fide* = - g f fi p*u*H*ydH*
H * € g o*
W
*
Cftmw telwt o1 r Ve u ePr )1
£.(H %) 1+
1w ur Pr Yw ur Pr vV Prt X
H*
W
He * 1 Ui « 1 " *

with the restriction that fi(l) = 0. The resulting equa-
tions to be solved for O and x are equations (3.32) and
(3.34), which are integro-differential equations that have
been integrated out of their u* and H* variations until

only ordinary differential equations in §{ remain.

3.5 Approximating and Weighting Functions

Approximating functions for groupings of variables
involving x and © must be chosen. These groupings should
be chosen to simplify algebraic manipulation as well as to
reduce computer calculation time. In Reference 44, p*0 was
found to be a computationally convenient group, and it is
seen to naturally arise many times in equation (3.32),

while in the present work p*u*y was discovered to be another
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computationally cbnvenient”group@ In'selecting the form of
the approximating functions, the perturbation procedure
developed in Koob and Abbott [41] was followed where the
initial distribution of a group in one variable is per-
turbed by a polynomial in the same variable which has
coefficients that are a function of the other variable,

for example

o*0 (u*,g) = Cj(E)ij(u*) (3.35)
where ¢j(u*) = Pj_l(Zu* - 1) %é%;i (3.36)

p*u*y (H*,E) = Dj(a)wj (H*) (3.37)
whezre oy (H%) = By (2H% - 1) gl (3.38)

Efﬁ:) = p*@(u*,Eo) (3.39)
and

ST gy () .10

Pj_l(Zu*—l) is the Legendre polynomial of (j-1) order with
argument (2u*-1). Repeated subscripts imply summation from
j=1 to N, where N 1is the order of the approximation.

The prime considerations in selecting the form of the
weighting functions are that the weighting functions
should be an orderly successive subset of a complete set

of functions to obtain solutions that converge most rapidly

for successive approximations (see Bethel and Abbott [40])
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and that thé'Wéighting functions should simplify the evalua-
tion of the integrals in equations (3.32) and (3.34) as
much as possible. The weighting functions chosen for this

work are

hi(u*) = (1l-u¥%) P. 1 (2u*-1) (3.41)

£, (H¥) (1-H*) P,_, (2H*-1) (3.42)

1

The form of the weighting function hi(u*) was selected
because it has proven to work well in the incompressible
work of Deiwert and Abbott [47], and its computational
advantages carry over to the compressible regime. No
precedent has been set for the selection of fi(H*); due to
the analogous manner in which the momentum and energy equa-
tions were treated, the selection of fi(H*) was taken to
have the same functional form as hi(u*). This achieved

the same computational advantages for the energy equation
treatment as were obtained for the momentum equation*o

Upon substitution of equations (3.35) and (3.37) into

equations (3.32) and (3.34) one obtains

*Credit should be extended here to the work of J. D. Murphy
at NASA-Ames Research Center for the development of the
Legendre polynomial formulation in the weighting and
approximating functions and for the discovery that this
formulation generates matrices whose terms are of the same
order of magnitude; consequently, round-off errors are
reduced in the ordinary differential equation solution and
the matrix inversion process.
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dcj ' *- du* Ueg lhﬁ (l“D*U*z) | d *
a | Py AT g G | Ry Tw T oy
(o] (o]
he(o) %y & 1 % *Bhﬁ
Mg by P Hi Mg pFu i .
+ ']-J—— C ¢ (0) + -]-,l_— e p*@ du = 0
r J 3 r 5
and
ap. ! Heg 1
a—l f.w.dH* = - —= D, f £, H*w.dH*
& i3 H,2 73 i J
H * H *
W w
] M, * 1w %*
- £ Y gy ‘l*‘f 're%?[“g%l
Pr Xu * r t
H
y o
e % - 1| _e u*p* " *
to [l Pr] i coe | fi  GH
r e 7373

To simplify the notation in equations (3.43) and

some matrices will be defined as follows:

1
A,. = [ h.u*¢_ du*
1] 1 J
o)
1, kg%l
— [ h. il_8¥2__L b .du*
1j 1 p J
o)
]
*® *
5 - E~ hi(O)pw Mo,
1 p*u*ph,
= *
9; f 5%0 du
o
1
f
R f.w.dH*
ij ) i j
H *
W
1
f g
L. = f.H*w, dH*
1j 1 J

(3.43)

(3.44)

(3.44),

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)



i ' ue uw* 1
= Yy = —
Li ﬁi(Hw ) i 5y X (3.51)
1
He u* £ Pr p*u*
M, = S Lk |1+ £
i u_ Pr V) Prt} D.w
g * J 3
W
LR (1 l] o Skl shal I (3.52)
pr— u — r—— ——— R ®
“r Pr He Cj¢j, 1

Using the above definitions, equations (3.43) and (3.44) in

matrix notation become

dcC. eg ue
Aij Efl - Iijcj + Bi + T g; = 0 (3.53)
e r
and
dD. Heg
Jij agl = - ﬁ;_ Kiij - Li = Mi (3.54)

Multiplication of equation (3.53) by the inverse matrix

of Aij and equation (3.54) by the inverse of Jij yields

dc e M

k _ £ -1 _ a1 e ,-1
aE = U—-—e ALy Iij cj Ay By —-—r 19 (3.55)

and
H

db e

k _ E ~1 -1 _ -—1
IFE "W Jki Kl:l 5 Jki L, Jei My (3.56)

It should be noted here that Aij and Jij are constant
matrices for a given flow case and conseguently only have
to be inverted once for any particular flow calculation as
was previously mentioned. Further examination reveals

, L.

. B., g i

Jj i
and Mi are variable matrices and must be evaluated at each

that Kij is also a constant matrix while Ii i



66

g-location. Equations (3.55) and (3.56) are the nonlinear
ordinary differential equations to be solved for Cy and Dy
which completely specify the desired solution variables as

shown in Section 3.7.

3.6 Initial Conditions

Kk and Dk

coefficients before the solution of equations (3.55) and

Initial conditions must be obtained for the C

(3.56) can be found. These initial conditions can be
obtained quickly and simply by combining equations (3.35),

(3.36), and (3.39) into
* = Ko

p*0 (u*,¢g) Cj(E)Pj_l(Zu 1)e*0(u*,g ) (3.57)

Evaluation of equation (3.57) at EO yields
— Ko

1 = Ci(E )P, (2u*-1) (3.58)

Recalling that P_(2u*-1) = 1 and that Pj_l(2u*—l) is a

linearly independent set of functions, it is seen that

Cl(Eo) =1 (3.59)
and

Cj(EO) =0 for j # 1 (3.60)

In the same manner it is noted that

p*u*y (H*, ) Dj(E)Pj_l(ZH*~l)p*u*x(H*f€ ) (3.61)

(o]

and

I_.I

= D, (£ )P, ) (2H*-1) (3.62)
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thus
Dl(io) = 1 (3.63)
and

Dy(E,)) =0 for j#1 (3.64)

Quite simply the coefficients have been specified at
the initial location EO without any dependence on the
physical initial conditions (velocity and temperature pro-
file), since the initial velocity and temperature profiles
are the basis for the approximating functions.

3.7 Calculation of the Desired Solution Variables
from the Coefficients Ck(E) and Dk(E)

Some of the desired outputs of a boundary-~layer pre-
diction technique are skin-friction coefficient Cf, dis~
placement thicknessﬁé*, momentum thickness 08, velocity
profile u(y), temperature profile T(y), heat transfer at
the wall Qs and various other thickness and shape parame-
ters. The derivation of these desired outputs is shown
below. First, from the solutions of equations (3.55) and
(3.56) the Ck(E) and Dk(E) coefficients are known:; thus,
from equations (3.35) and (3.37), p*6(u*,£) and p*u*y (H*,£)

are known. Using the identity

0 _ p*O(u*,t)
u*y — p*u¥*y (H*,%)

(3.65)

and after some algebraic manipulation and integration over

n, equation (3.66) is obtained.
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n n :
% 3
orury (H*,£) L gn = | wrpro(ur,g) X gy (3.66)
an an
O

o
Upon change of the variable of integration, equation (3.66)
becomes H* u*
f p*u*y (H*,£) dH* = f p*0 (u*,£) u*du* (3.67)
H * o

w
which yields H* (u*) at a specified value of §. From this
H* (u*) function, p*(u*) is immediately obtained by use of
the definition

HE = (CT + u2/2)/He (3.68)

and the perfect gas law

* =
P RT (3.69)

Now using the identity

o = P*¥O(u*,¢e)

R ACT (3.70)
with some algebraic manipulation and integration, one
obtains u*

n = f o) aw (3.71)
o

which gives the velocity profile at a given ¢ location in
the form of n(u*) instead of the usual form u*(n). The
total-enthalpy profile is obtained by incorporating the
n(u*) function of equation (3.71) into the H*(u*) function

given by equation (3.67). Using
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T
— W_____
Cf = T Uz (3.72)
2 pe e
_ Ju
Ty = My §§| (3.73)
W
-1
_ (ou*
o = (Bn ] (3.31)

and the approximation function for 0, equation (3.35), one

obtains
2u,P* YRe .
C. = o (3.74)
£ e UL (-1)7 1ch(0)

From the definitions of displacement thickness and momentum

thickness,

8
5% = [ (1 - p*u*) dy (3.75)
@)
and s
o = f p*u* (1-u*) dy (3.76)
(o]
one obtains 1
§% = L f (1 - o*u*)odu* (3.77)
/Re
r (@]
and 1
6 = - f u* (1-u*) p*0du* (3.78)
/Re_ )

For the heat transfer at the wall

9T

q, = - k 5= (3.79)
Yiy
one obtains o U JRe™ H
e e r e

q="k ¥
W p, UL Cpx(Hw . )

(3.80)
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Further derivations for shape parameters and higher order

thickness parameters can be performed easily.

3.8 Analysis of Experimental Data

In the search for sets of experimental data on super-
sonic, compressible, turbulent boundary layers with which to
compare theoretical calculations, the task is more in the
’line of discovery than selection. Add the further restric-
tion of moderate Mach numbers, say Me < 6, which is required
for the validity of the governing equations and the eddy-
viscosity model used in this investigation, and the avail-
able experimental data shrinks to a few isolated data sets
for flat-plate type flows — flow over a flat-plate model,
flow along hollow cylinders, and flow on wind tunnel walls —
and only a handful of data for pressure-gradient flows.
Johnson and Bushnell [48] have made a rather exhaustive
tabulation of experimental data for the flat-plate t?pe
flows while a couple of the pressure-gradient data cases
for moderate Mach numbers are available in the reports by
Pasiuk, Hastings, and Chatham [49] and by Winter, Smith,
and Rotta [50].

An additional complication arises in comparing calcu-
lated results with experimental data in that the majority
of the experimental data is for the adiabatic flat-plate
case and as reported by any given author was taken by
holding the streamwise measuring station and the free-
stream Mach number fixed while the Rex parameter was varied

by changing the pressure level, and consequently the
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free—stréam density, in the wind tunnel. The measurements
were made in this manner due to the complications arising
from the reflection of shock waves inside the wind tunnel.
Consequently, when such data is presented as a plot of Cf
versus Rex at a constant value of Me' it represents the
variation of Cf with a change in pressure level instead of
with a change in x - the normal case for incompressible data.
Since prediction schemes are designed to calculate the
development of a boundary layer with increasing x, some
method must be devised to compare the calculated results
with this typé of experiment.

Cebeci, Smith, and Mosinskis [1l] devised a method
which consists of starting their calculations at the leading
edge of the adiabatic flat plate where the flow is assumed
to be laminar and then arbitrarily specifying the flow to
be turbulent at the next x-station which is arbitrarily
assumed to be at x = 0.001 ft. The calculations are then
carried out downstream until the calculated value of Ree
reaches the experimental value, and at that point the cal-
culated boundary-layer parameters are compared with the
experimental measurements. Despite their rather harsh
assumptions that the laminar region is 0.001 ft. long for
all flow cases and that there is no transition region, their
calculations of boundary-layer parameters agree very well
with experiment. Herring and Mellor [8] have devised a

scheme whereby they carry out calculations by assuming Ue



72

and 86* to be linear in x and the (p*u*) and H profiles to
be independent of x; after performing calculations in this
manner up to within two or three x-steps of the point where
the experimental data is given, they relax their above
assumptions and continue the calculations through the final
two or three x-steps up to the data point and at that x-
location compare their calculations with the experimental
data for the boundary-layer parameters and profiles. Herring
and Mellor's method of comparing their calculations with
experimental data that has been obtained at one x-location
can thus be characterized as an elaborate initialization
procedure; indeed, they use an iteration on this procedure
to get the initial conditions for their calculations when
they are computing a flow which has been measured at
various x-locations.

There is another possible approach by which calculations
can be compared with the experimental data measured at one
x-location, and this approach is a better indication of
the ability of a calculation technique to predict the behavior
of a turbulent, compressible boundary layer. This method
will be explained after a brief introduction of some experi-
mentally observed trends which underlie the basis for this
new approach. The chief experimental observation noted by
Matting et al. [30] is the one shown by Figure 19 which
is a comparison of faired curves through experimental data
for adiabatic flat plates. All of the data for M, 2 2.54 was

obtained by holding the streamwise measuring station and the
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free-stream MachAnumber fixed while Rex was varied by changing
the pressure ievél in thebﬁind'tunnel; In Figure 19, x is the
distance between the transition point and the location of the
measuring station; the transition peoint is assumed to be the
point of maximum Cfo The parameter x was used because, to
obtain some type of universal relationship involving Reynolds
number, it is necessary to obtain a virtual origin for the
turbulent boundary layer so that the length parameter in the
Reynolds number is independent of the length of the laminar
region. Figure 19 implies that the resulting Cf - Rex rela-
tionship is a universal one, and this fact can now be used
in comparing analytical and empirical results. The calcula-
tions are started for a given data Mach number by generating
initial conditions at the lowest experimental value of Rex,
then the calculations are continued downstream and the cal-
culated values of Ce are compared with the empirical values
at the experimental points where ReX is known.

Further examination of the experimental data shows
that there is no possibility for a direct comparison between
the measured and predicted values of the boundary-layer
thickness parameters (8§, 6*, and 6); the measured values of
the thickness parameters generally decrease with increasing
Re . while the predicted values increase. The reason for
the discrepancy between the predicted and experimental
results is easily understood if we revert to the incompres-—
sible turbulent boundary-layer case where a simple analytical

computation can be performed. The one-seventh power velocity
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law and the*momentum:imtegral equation combine to give an
ordinary differential equation for § which upon integration
yields -1/5

U x
8(x) _ 9.37 [———e
X

v (3.81)

for the boundary-~layer thickness on a flat plate. This
result shows that if ReX is caused to increase by increasing
¥, then 6 also increases, as is the case for the predicted
results; but if Re is made to increase by increasing the
value of Ue/v, then § decreases, as in the case of the
experimental data. While this analysis is not directly
applicable to compressible flow, it suggests a possible
rationale for the aforementioned discrepancy which is con-
sistant with evidence for compressible flow.

Although it is not possible to directly compare the boun-
dary-layer thickness parameters, the velocity profiles (in the
form of u/Ue versus y/0) and the Mach-number profiles (in
the form of M/Me versus y/6) may be compared, since these
profiles form nearly universal functions (see Schlichting
[33]*)° These functions are not exactly universal in that
all data points do not fall on exactly the same curve; in
particular, there is considerable deviation near the wall;

however, such a deviation might also be caused by probe

*Schlichting*s argument is based upon the velocity profile.
The universality of the Mach-number function is then
directly implied by the universality of the Crocco relation-
ship for T(u) which is valid for the adiabatic, flat-plate
flow case.
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interference close tco the wall. In any event, for lack of a
more reliable comparison, the u./Ue versus y/6 and M/Me versus
y/0 profiles are utilized in this work for a comparison
between theory and eXPeriment@ The measuxed value of 6 is
used in the experimental profiles and the calcuiated value

of 6 is used in the predicted profiles. It will be shown

in Section 4 that the present MWR calculations agree not

only with the experimental data but also with the finite-

difference calculations of Cebeci, Smith and Mosinskis {[1].

3.9 Summary

In Section 3 the mathematicél modeling of the physical
problem — compressible, turbulent boundary layers — is
presented, and solution techniques for the governing equations
are discussed. The selection of the MWR solution procedure
is discussed, and the details of its application to the
governing equations are presented. Upon the introduction
of a shear model into the resulting equations, the predic~
tion analysis for compressible, turbulent boundary layeré
is completed. A search for experimental results to compare
with the analytical predictions is undertaken, and the
available data is found to be taken in a manner different
than that assumed in developing the prediction program.

Two procedures, developed by other investigators for com-
paring the data with predictions, are examined while a
somewhat different procedure is developed and suggested as

a proper indication of the ability of a prediction scheme.



4., CCOMPARISON OF CALCULATED AND EXPERIMENTAL RESULTS

4.1 The Numerical Solution Procedure

The appropriate MWR equations governing the flow over an
adiabatic flat plate have been programmed for a CDC 6500 com-
puter. The Crocco equation relating temperature to velocity
has been used instead of the complete energy equation, since,
as explained in Section 2,5*, the Crocco equation is quite
adequate for the adiabatic flat-plate case. A numerical
solution was obtained for equations (3.55), which are a
system of N first-order ordinary differential equations where
N is the order of the desired approximation. Equations (2.23)
to (2.26) were used for the property variations while several
different turbulent shear models were employed to evaluate
the turbulent shear terms in the governing equations. This
MWR formulation was used to predict the flows over adiabatic
flat plates at four different free~stream Mach numbers. Skin
friction vafiation, velocity profiles and Mach-number pro-
files were computed and compared with experimentally measured
values. In programming the solution for the MWR equations,

two methods were used to solve the first-order system of

This adeguacy is further substantiated by the fact that
Herring and Mellor [8] calculated adiabatic flat-~plate
flow cases two ways, once using the Crocco relation, and
once using the complete energy equation. The results were
identical within the accuracy of their graphs.
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ordinary differential eguations, eguatione (3.55); they are

Hamming's modified predictor-correcior method and the fourth-

o}

order Runge-Rutita method {szese Ralston and Wilf (53] for
e}

&

details of these methods). Both methods worked quite well;
however, Hamming's method was slightly faster; and, there-~
fore, it was used in obtaining the resulis presented in this
paper. The resultant computer program used to solve the
system of equations is presented in Appendix B. The calcu-
lation time on a CDC 6500 computer for an entire flow case
was generally about 20, 150, and 350 seconds for the first,
second, and third approximations respectively. The time

for a second approximation was the same order as the time
required by the CSM [1] finite-difference methods. Usually
the MWR takes considerably less calculation time than does

a finite-difference method; however, in the present work

the calculation times of the two techniques were comparable
because an eddy-viscosity model was used which required
calculation of velocity and eddy-viscosity profiles at

every £~location and because the sensitivity of the eddy-
viscosity model necessitated a very small Af{ step size (as
will be explained in Section 4.4). Nevertheless, a potential
reduction of the MWR calculation time by an order of magni-

tude is indicated in Section 4.4



4.2 The MWR Results Using the CSM Eddy~Viscosity Model

The results of this section are obtained using the CSM
eddy~viscosity model in the third approximation formulation
of the MWR*@ -To obtain starting velocity and shear-stress
distributions, the iteration procedure described in Section
2.4 and Section 2.5 is used. However, no smoothing or
iteration (of any variabhle) is employed downstream.

The first comparison is for the flow over an adiabatic

flat plate with the following values of the parameters:

M, = 2.54

Ue = 1931 ft/sec
—_— o

Tw = 519.3°R

L = 8.194 ft

The MWR predicted results are compared with the experimental
measurements of Coles [24] and with some analytiéal results
cf Cebeci, Smith, and Mosinskis [l1]. The starting velocity
and shear-stress profiles, obtained by the iterative pro-
cedure of Section 2.4 and Section 2.5, are given in Figures

.20 to 23. Figure 20 displays the shear-stress and

%*
Solutions from the first, second and third approximations

are displayed in Appendix C where the convergence pro-
perties of the MWR are discussed.
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velocity~derivative distributions which were calculated from
the experimental data bv the progedure of Section 2.4.
Figure 21 shows the velocity profile after iteration compared
with the experimental profile. Figure 22 compares the
velocity-derivative profiles before and after iteration
while the eddy-viscosity profiles before and after iteration
are shown in Figure 23. The profiles after iteration are
the input, starting profiles for the MWR solution technique.
Figure 24 displays the MWR skin-friction variation, the
experimental values, and one result of the CSM calculations.
The one CSM calculated value is in error 3.31 percent. (For
the purpose of calculating errors the experimental values
are assumed to be correct.) The maximum error in the MWR
solution is 3.5 percent at Rex = 4,21 x 106. Figures 25

and 26 present the velocity and Mach-number profiles at

the initial x-station and two downstream stations. The MWR
calculated profiles agree fairly well with the experimental
data while the CSM profiles at ReX = 4,21 x 106 are slightly
better than the MWR calculations.

A second case was considered for an adiabatic flat

plate with
M = 2.95
e
Ue = 2140 ft/sec
T = 551°R
w

L = 13.5 £t

The predicted results were then compared with the experimental
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measurements of4Mattimgg Chapman, Nyvholim, and Thomas [30]
and with some analytical calculations cf Cebeci, Smith, and
Mosinskis [1l}. Pigure 27 shows the comparisons for the
variation of the skin-friction coefficient. The CSM calcu-
lations andvthe MWR predictions agree very well with the
experimental data. The maximum error ir the MWR solution
is 2.23 percent at Re = 20 x 106 while the maximum error
of the CSM calculations is 2.6 percent at ReX = 9 X 106o
Figures 28 and 29 show comparisons of the velocity and Mach-
number profiles at the initial x-location and a downstream
location. The calculated profiles agree quite well with

the experimental data. The MWR predictions are slightly
better than the CSM calculations at the lower Reynolds

number and at the outer edge of the thermal boundary layer.

A third case was considered for an adiabatic flat

plate with
M, = 3.69
Ue = 2202 ft/sec
— [+
Tw = 516°R
L = 8.647 ft

Figure 30 shows the MWR calculations for skin-friction varia-
tion compared Qith the experimental data of Coles [24] and
with the one calculated wvalue of Cebeci, Smith, and Mosinskis
{1}. The one value from the CSM results was essentially
identical to the experimentally measured value. The maximum

error in the MWR results is 7.25 percent at Rex = 6,35 X 106@
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Figures 31 and 32 show the predicted and experimentally
measured velccity and Mach-number profiles at the starting
location and two downstream locations. The agreement
between the MWR predictions and the experimental data is
only fair for the Mach-number and velocity profiles at the
downstream locations, but the CSM vrofiles are only fair
also. The difference between the predicted and experimental
profiles might be attributed to the experimental investiga-
tion, since a slight inflection point is noticeable in the
experimental Mach-number profiles near a value of y/6 = 7.
Such inflections can be caused by external flow disturbances.

The fourth test case was for an adiabatic flat plate

with
Me = 4,2
Ue = 2360 ft/sec
— o
Tw = 539.08°R
L = 22,39 ft

Figure 33 compares the skin-friction calculations with the
Cebeci~Smith~Mosinskis [l1] predictions and with the experi-
mental measurements of Matting, Chapman, Nyholm, and Thomas
[301. The MWR skin-friction calculation is considerably
better than the CSM prediction: the maximum error of the
CSM prediction is 10.3 percent occurring at Re = 35 x 106
while the maximum error of the MWR calculation is 3.75 per-
6

cent at ReX = 96 x 10 . PFigures 34 and 35 show comparisons

fecr welocity and Mach~number profiles at the initial



C‘.'C-'

Figure 31:

94

Experimental data of Coles [24]
CSM calculation [1]

MWR calculation using the CSM
eddy-viscosity model

[0 W o SR

L 6
,,ywﬂtffﬁjzkd{iex = 2.64 x 10

Comparison of Velocity-Profile Calculations
with Experiment, M, = 3.69

S R W SR SRR W ]
0 4 8 12 16 20 24
y/®



[Ys}
&8

2.64 x 10°

6

0.67 x 10

3'3

Experimental data of Coles [24] -
- CSM calculation [1]

— MWR calculation using the CSM 7
eddy-viscosity model

NS | NSRS RV NSO T 1
0 4 8 12 le6 20 24

y/@

FPigure 32: Comparison of Mach~Number Profile Calculations
with Experiment, Me = 3,69



4.0

(98]
(e
~J
X
H
&}
0.6
0.2
Figure 33:

26

Experimental data of Matting
et al. [30]

CSM calculation [1]

MWR calculation using the CSM
eddy-viscosity model

Comparison of Skin-Friction Calculations

Experiment, Me = 4.2

with

100.



(X}
=3

C!iﬁ

Experimental data of Matting
et al. [30]

CSM calculation [1]

MWR calculation using the CSM
eddy-viscosity model

Figure 34: Comparison of Velocity-Profile Calculatlons
with Experiment, Me = 4.2



98

ZFZ

Experimental data of
Matting et al. [30] .

- CSM calculation [1]

MWR calculation using the
CSM eddy-viscosity model

0 4 8 12 16 20 24
y/®

Figure 35: Comparison of Mach~Number Profiles with
Experiment, Me = 4,2



%—-location and two downstream locations. The profile com~
parisons are somewhat incopnclusive, since the MWR results
are better than the CSM results at some x-locations and in
some regions of the boundary layer while the opposite is
the case at other x-locations and in other regions of the
boundary layer. Overall the calculated profiles of the MWR
and CSM methods agree well with the experimental measure-

ments.

4.3 Reliability of the Calculations

The MWR results in Figures 24 through 35 agree quite
well with the experimental data and in general are as
accurate as the Cebeci~-Smith-Mosinskis [ll predictions.

The convergence properties displayed by the first three
MWR approximations are also particularly satisfying (see
Appendix C).

In Section 2 special attention was directed to the
shear-stress profiles as a possible key fto improving the
prediction of the boundary-layer parameters for turbulent
flow. For this reason, the shear-stress profiles calculated
by the MWR technique will be carefully examined. Initially,
however, the calculation procedure should be re-emphasized.
First, the starting conditions are obtained by the iterative
procedure of Section 2.5; this provides a properly behaved
shear-stress profile at the initial streamwise location.
Second, with these initial conditions the MWR technique

calculates the boundary-layer variables at the downstream



locations; no iteration or smocthing is used on the CSM
eddy-viscosity model atc any downstream position. Following
this procedure, Figure 36 shows the calculated shear-stress
profiles from the MWR sclution for the flow with M, = 2.54,
and Figure 37 shows the corresponding eddy-viscosity profiles.
it is seen that a rather large oscillation in the shear-stress
profiles exists at the downstream locations, and the magni-
tude of this oscillation increases as the calculations pro-
ceed downstream. In Figure 37 the match point between the
inner and outer eddy~viscosity expressions occurs at

y/8 = 0.18; therefore, the oscillatory behavior in Figure

36 exists entirely within the inner region. It is thus

very likely that the oscillations in shear stress can be
attributed to a sensitivity of the inner~region equation of
the CSM eddy-viscosity model (see Section 2.5). Neverthe-
less, it is important to recall how well the skin friction
coefficient, Mach-number profiles, and velocity profiles

have been calculated even with the simultaneous development
of an oscillatory behavior of the shear-stress profile, at
least for the particular flows considered. On the other hand,
it is possible that the gross parameters would not be pre-
dicted as well for a more difficult flow, say one with a
suddenly changing pressure gradient. For such a case, the
eddy-viscosity profile might have to be smoocthed at every
x=station to obtain satisfactory predictions.

Another rather microscopic but very important result
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occurs in the skin-friction prediction near ‘the startiﬁg
region of the calculationz. In fact this result is so close
tc the starting point that it ig not ohservable on the scales
of the previous graphs of skin-friction coefficient. Conse-
guently, the'starting region of the skin-friction graph has
been magnified greatly, and the results of the MWR solution
for the Me = 2,54 flow are shown in Figure 38. The peak in
Figure 38 is caused by inaccuracies in evaluating the 95
vector at the initial streamwise location. These inaccur-
acies cause the calculated value of dCf/dReX to be positive
initially, but as the calculation program proceeds down-
stream, it reverses the skin-friction curve which then
fcllows the trend of the experimental data. Thus, when the
initial conditions are rather incompatible with the govern-
ing equations, the prediction program corrects these incom-
patibilities in a very small streamwise distance — a very
desirable characteristic of a prediction technique. The
mechanism in the prediction program which generates the
rapid, corrective response is probably closely related to
the sensitivity of the CSM eddy-viscosity model. Perhaps
any incorrect behavior in the boundary-layer calculations

is quickly sensed by the CSM model, and a corrective
response in the form of a shear-stress profile is immediately
input to the governing eguations at the next calculation
step. The same mechanism which was previously blamed for

the troublesome sensitivity of the CSM eddy~viscosity model
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is now being suggested as a prcbable cause for the proper
responsiveness of the prediction program. Perhaps the com-
bination of the defining eguatiocns for eddy viscosity with
the boundary-layer equations generates a sensitivity which
must be accommodated in any calculation procedure. This
sensitivity may even be necessary for the predictions to
display the proper response to numerical disturbances.
Responses analogous to the peak in Figure 38 have been
noticed by other investigators. For example, in calculating
compressible, turbulent boundary layers by a finite-~dif-
ference method, Herring and Mellor [8] generate what they
call reset initial profiles by making various assumptions
on the development of the flow which generated the initial
experimental profiles; then in Herring and Mellor's words,
"Since there was a slight discontinuity in values like Cf
and 6* between the reset profile and the first profile
moving forward, it was found best to allow space to calcu-
late profiles at two or three stations before the initial
station.® Thus, initial disturbances are not uncommon in

prediction programs for turbulent boundary layers.

4,4 The MWR Calculations Using Alternate Shear Models

in the prediction of compressible, turbulent boundary
layers using the CSM eddy-viscosity model, there developed
anomalous oscillations of the shear-stress profile in the
innper region of the boundary layer, even though skin-fric-

ticon and velocity and Mach-numbexr profile calculations were



106

satisfactory. In Section 4.2 these oscillations were
attributed to the sensitivity of the CSM eddy=-viscosity
model. It would be instructive to see if any shear models
could be constructed which would be devoid of oscillations,
but would still yield accurate predictions of the boundary-
layer parameters. Consequently, the task was undertaken to
predict the compressible, turbulent boundary layer with the
MWR using alternative shear-stress models which, by con-
struction, would yield well-behaved shear-stress profiles.
As a first attempt, a very simple-minded approach was
used even though it could only conceivably be expected to
work for the flat-plate flows. In the inner region of the
boundary layer, denoted by subscript i, the shear stress

was assumed to be a constant,
T, = 1T (4.1)

while in the outer region the CSM eddy;viscosity model was
employed, since it yields well-behaved shear-stress profiles
there. The junction between the‘inner and outer regions
was defined as the point where the shear stress from the
inner~region model equaled the shear stress from the outer-
region model. The MWR predicted skin-friction results with
this shear model are shown in Figure 39 for a second |
approximation. These are the results for flow over an
adiabatic flat plate at M, = 2.54, The calculations are

shown with and without the initialization procedure of
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Appendix D where a procedure has been developed to arti-
ficially match the experimental and calculated values of
dCf/dRex at X .

In hopes of obtaining better skin-friction predictions,
a slightly more sophisticated shear—-stress model was next

considered for the inner region,

th = 1 - 2.3978 y** + 2.9266 y*> (4.2)

where Ti = Ti/TW and y* = y/8§. Equation (4.2) was
cbtained from an analytical curve fit to the inner-region
shear-stress results of Bradshaw [54] on a flat plate in
incompressible, turbulent flow. In the outer region the
CSM model was again used, and the junction between the two
regions was defined as the point where the shear-stress
values from the inner and outer equations were equal. The
MWR predicted skin-friction results with this shear model
are shown in Figure 40 for a second approximation. The
calculations were again made for flow over an adiabatic
flat plate at Me = 2.54. The predictions are shown both
with and without the dCf/dReX initialization of Appendix D.
The predictions using equation (4.2) are no better than
those using equation (4.1); in fact, the results are nearly
identical.

In another attempt to improve the skin-friction cal-~
culations, a much more sophisticated shear-stress eguation

was developed and employed in the prediction program. The
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idea for this model arose from the work of Clauser [4]
where he developed universal velocity profiles for incom-
pressible, turbulent flow over a flat plate. He developed
universal correlation functions separately for the inner
and outer regions and argued that there must be a parameter
tying these two regions together in an overlap region. He
chose the shear stress at the wall for the joining parameter.
Perhaps the trouble with the two previous alternate shear
models was the rough manner in which the separate functions
for the two regions were joined; consequently, a model was
developed which links the inner and outer regions and has

a smooth junction between the two regions.

For this model, it is assumed that a fourth-order

polynomial of the form

3 4

2
% (%) = * * %2 4 *
Ti(y ) bo + bly + b2y + b3y + b4y (4.3)

can satisfactorily model the shear-stress behavior in the
inner region. The bi coefficients are constants at a
specified x~station and are determined from the following

relations:

t3(1) =0 (4.4)
3T§(l)

$#(0) = 1 (4.6)



2T¥ (0) ;
o . (4.7)
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8T§€y§) _ 9T¥ (yx)
ay* = ay'k (408)

where subscript i denctes the inner region, subscript o the
outer region, and yé ig the value of y* &t the match point
between the two regions. Equations (4.4) through (4.7)
satisfy four relevant boundary conditions; equation (4.7)
is obtained from the evaluation of the x-momentum equa-
tion (3.11) at y* = 0, and equation (4.8) is the matching
condition which creates a smooth junction between the

inner and outer functions. The CSM eddy-viscosity equation
was again used in the outer region, and the combined shear
model was incorporated into the MWR prediction program.
Again, the skin-friction variation was calculated for an
MWR second approkimation for flow over an adiabatic flat
plate with M, = 2.54 and is shown in Figure 41. Both the
calculations with and without the dcf/dReX initialization
procedure are shown, and it is seen that these results

are slightly worse than those from the simpler shear models
of Figures 39 and.40.

Summarizing, the skin-friction coefficient predictions
from three alternate shear models show a maximum error in
the MWR calculations between 16 percent and 27 percent in
Figures 3%, 40, and 41. In contrast, the maximum errcr in

a second approximation of the MWR calculations for skin
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friction using the CSM eddy-viscosity model is 10.8 percent
as seen in Appendix C. Although the calculations with the
alternate shear models. are not too bad, nevertheless they
are not nearly as good as the predictions with the CSM
model. 1In Figures 39, 40, and 41 the calculations with
the alternate shear models, but without the dCf/dReX initial-
ization of Appendix D, start very poorly but then level off
and approach the experimental data as ReX increases. At
first this characteristic was thought to be an incompati-
bility between the sterting conditions and the governing
differential equations; consequently the analysis of
Appendix D was performed to allow the skin-friction varia-
tion to start properly. However, the calculated results in
Figures 39, 40, and 41 with the dCf/dReX initialization
procedure are no better than the results without the
initialization procedure: the region of inaccurate calcu-
lation is just shifted from low ReX to high Rex. It seems
that the alternate inner-region models simply do not con-
tain enough physical make-up of the inner layer to be ade-
quately responsive to the developing boundary layer. The
hope of using a polynomial in y for the inner shear-stress
equation and still calculating the skin friction as accu-
rately as the predictions with the CSM eddy-viscosity model
has consequently been abandoned at the present time.

There would be, however, a very practical advantage

to obtaining a smoothly varying shear-stress formulationg
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namely in providing an order of magnitude reduction in
machine calculation time., This contention can be illus-
trated by considering, as an approximation and with no
special claims being made concerning its physical basis, a
single polynomial representation for the shear stress
across the complete viscous layer. In Section 4.3 it is
seen that the calculated shear-stress profiles oscillate
in the inner region of the boundary layer when the CSM
eddy-viscosity model is used in the MWR prediction program.
Complications of these oscillations are believed to propa-
gate into the solution of the ordinary differential equa-
tions for the Cj coefficients and to require a very small
step size in the f-direction (which consequently increases
the computer time) in order to obtain accurate solutions
for the Cj‘ To verify that the CSM eddy-viscosity model,
with its shear-stress oscillations, necessitates the small
Af steps, the task is undertaken to predict the compressible,
turbulent boundary-layer behavior by using still another
shear-stress model which, by construction, will yield
smooth shear-stress profiles with no oscillations.

A similarity approach, comparable to that of Chi and
Chang [55] and Ross and Robertson [56]; is chosen across
the entire boundary layexr by assuming shear~stress similarity
in the nondimensional cocrdinates T/TW versus y/8. A third

degree polynomial of the form

% &% % *2 ‘ﬂf3
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is selected where the coefficients of the polynomial are

found by the following boundary conditions:

TH(1) = 0 (4.9)
3t* (1)
'-‘-'-a—'yfr = 0 (4.,10)
T*(0) = 1 (4.11)
d1* (0) .

!
e < T ag (4.12)

The resulting equation for shear stress is

T* (y*) = %L %% y* (y*-1)2 + y*% (2y*-3) + 1 (4.13)
w

The behavior of this equation is shown in Figure 42. Equa-
tion (4.13) is not ﬁroposed as an accurate quantitative
description of the physical phenomena by means of which

the predicted boundary-layer parameters can be improved;
but rather it is proposed as a qualitatively correct,
simple, and smooth analytical expression which can be used
to study the restriction on the step sige A and therefore
the machine computation time.

Boundary-layer calculations were performed by the MWR
technique for flow over an adiabatic flat plate using equa-
tion (4.13) for the shear-stress model. The skin-friction
results at Me = 2.54 are shown in Figure 43 for the second

approximation with and without the dCf/dRex initialization



1ls

Figure 42: Shear-Stress Profiles Calculated from
Equation (4.13)
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procedurc. These results are considerably worse than those
of the alternate shear models which used separate formula-
tions for the inner and outer regions, since the maximum
error of the calculations in Figure 43 is 50 percent.

These calculations were made using various values of the

step size A{. Values cf A equal to 0.001, 0.01, and 0.03
all gave results for the Cj coefficients which were identical
to five significant figures whereas the calculations for

the Cj coefficients using the entire CSM model, Section 4.2,
required A¢ values of 0.001 and smaller for successive
solutions to agree to three significant figures. The résults
obtained by varying A indicate that the sensitivity and
oscillation of the CSM eddy-viscosity model require the use
of the very small step size of Af = 0.001, which consequently
inflates the machine calculation time. For example, if a
step size of Af = 0.01 could be used instead of 0.001 with
the CSM model in Section 4.2, then the average calculation
time for the second approximation of the MWR would be
decreased from 150 seconds to less than 19 seconds on a

CDC 6500 computer. Thus the requirement of the small step
size is attributed to the sensitivity of the CSM eddy-
viscosity model, and the potential for accurate predictions
of the boundary-layer parameters with an order-of-magnitude
reduction in computer time is indicated when a smoothly
behaved shear model is found which adequately describes

the physical phenomena.
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4.5  Summary

The numerical scolution procedure for calculating com-
pressible, turbulent boundary 1&yérs with the MWR technique
was described. Solutions were obtéined using the CSM eddy-
viscosity model for compressible flow of air over an adia-
batic flat plate at four different Mach numbers. The cal-
culated results agreed well with the experimental data, and
in general, the results predicted by the MWR were at least
as good as the results predicted by the Cebeci-Smith-
Mosinskis [1l] finite-difference method. The machine calcu-
lation time for a second approximation of the MWR was of the
same order as the CSM method, but a potential reduction in
calculation time by an order of magnitude appears to be
possible if a smoothly varying and physically correct shear-
stress model can be found. Despite good predictions of
skin-friction coefficient and velocity and Mach-number pro-
files, oscillations in the calculated shear-stress profiles
were found to develop at the downstream locations. These
oscillations were attributed to the sensitivity of the
inner-region equation of the CSM eddy-viscosity model. A
nearly microscopic peak in some of the skin-friction cal-
culations was detected near the starting region, and the
cause of the peak was found to be slight inaccuracies in
the starting values of the shear integrals 9; e

Alternate shear—stress models were developed and

employed in place of the CSM eddy-viscosity model in the
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hope that an improvement of the gualitative behavior of

the shear-stress profile would improve the boundary-layer
predictions. This was not the case; the predictions using
the alternate shear models were considerably worse than
those using the CSM eddy-viscosity model. Some important
information, however, did result from the use of the alter-
nate shear models. With a similarity model for shear stress,
a much larger Af{ step size could be used than that required
by the CSM eddy-viscosity model. The resulting machine
computation times were consequently reduced by an order of
magnitude. Thus the door is opened for the development of

a calculation procedure which will predict accurate boundary-
layer parameters while requiring a very small machine time;
The only missing ingredient is an alternate shear-stress
model which will generate results as accurate as those

from the CSM model while permitting a much larger step

size AZ than that required by the CSM model.
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5. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

5.1 Summary

The two main goals of this work are: (1) the examina-
tion and selection of turbulent shear information models
to be used in a boundary—-layer calculation procedure and
(2) the development of a calculation procedure for two-
dimensional, compressible, turbulent boundary layers.

First, calculations employing various turbulent shear
models that have occurred in the literature were noted and
compared; and two models were selected for further study
in the present investigation. The CSM eddy-viscosity model
was ultimately chosen to be incorporated into a prediction
program, An iterative procedure was applied at the initial
calculation station to correct the erratic behavior of the
initial shear-stress profile, and a constant in the CSM
model was modified.

Second, a calculation procedure was developeé by
applying the MWR solution technique to the governing equa-
tions for two-dimensional, compressible, turbulent boundary
layers. A computer program was written for this solution
procedure, and the mumerical results were compared with the
experiments of Coles [24] and Matting et al. [30] and with

the finite-difference solutions of Cebeci et al. [1] for
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the flow of air over an adiabatic flat plate.

Finally, a shsar-styvess similarity approach was under-
taken to eliminate the effects of the anomalous shear-stress
oscillations which arose when the CSM eddy-viscosity model
was employed in the prediction program. By means of this
similarity approach, the effect of the shear-stress oscil-
lations on the accuracy of the predicted boundary-layer

parameters and on the required computation time was studied.

5.2 Conclusions

1. Many eddy-viscosity models yield qualitatively incorrect
shear-stress profiles in the inner region of the turbu-
lent boundary layer as is seen by results from previous
investigations in the literature as well as by results
calculated in the present investigation.

2. An error analysis on the CSM eddy-viscosity model pro-
duces a very plausible explanation for the anomalous
shear~stress behavior by indicating the strong sensi-
tivity of the model to the velocity profile and to the
first y-derivative of the profile.

3. The CSM eddy-viscosity model is one of the best known
and highly regarded turbulent shear models in the
turbulent boundary-layver literature and therefore is

. employed in the prediction program of this investiga-
tion.

4, A significant improvement of the CSM eddy-viscosity

model is achieved in compressible flow by allowing the
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to the large degres of =zgatter in the calculated values

of Kl, this function ig not as vet wmell-defined,

The present method for comparing turbulent, compressible

boundary-layeyr calculations with experimental data (measured

at a fixed x-location and fixed Mach number) is a better
indication of the ability of a prediction program than two
methods of comparison developed by other investigators.

From the boundary-layer predictions with the CSM eddy-

viscosity model, it is seen that:

(i) The convergence properties of the MWR solution are
very well-behaved, and a second approximation is
sufficient for most engineering purposes.

{ii) The predicted results for velocity and Mach-number
profiles and skin-friction coefficient agree with
both experiment and the CSM finite-difference pre-
dictions. The resulting calculation times for the
MWR second approximation and the CSM method are of
the same order.

(iii) Although the proposed iterative procedure creates a
smooth shear-stress distribution initially, it is
nevertheless found that shear-stress oscillations
develop in the inner region of the boundary layer
as the calculations proceed to downstream locations.
The cause of these oscillations is probably a

result of the sensitivity of the CSM mcdel to the

velocity profile.
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7. The use of polynomial expressions for shear stress eliminated
the oscillations in the shear-stress profiles; the use of
these expressicns alsco reduced the computer time by an
order of magnitufie. A shesr model which vields smooth
shear-stress profiles, however, has not been found which

also yields resulis of acceptable accuracy.

5.3 Recommendations

Considering the success of the present formulation for
compressible, adiabatic, flat-plate flow calculations, this
formulation should be extended to pressure-gradient and heat
transfer cases. The major obstacle in this extension is in
obtaining a smooth and proper shear-stress distribution at
the initial calculation station. It is reasonable to expect
that the initialization procedure of Hirst and Reynolds [57] or
Bradshaw [58] could be extended to compressible flow for
this purpose, and the necessary modifications could be
made in the program for the initialization procedure and
for the handling of the complete energy equation.

In this work several alternate shear models were devel-
oped in an attempt to rid the prediction results of the
oscillatory shear—-stress behavior, but as a result consid-
erable accuracy in the predicted boundary-layer parameters
was sacrificed. However, this approach could be very
rewarding: if a shear model (devoid of any oscillatory be-
hawvior) can be found which adequately models the physical
situation, then an accurate prediction program can be

developed which will reguire very small machine calculation



times. &An alternative o developing a new oscillatorwaree
model is the modification of an existing model. For example,
a simple and practical (though rigorously unpleasing)
approach is the numerical smoothing of the oscillations of
an existing model at every streamwise station. Such a
smoothing procedure could lead to significant improvements
in the predicted boundary-layer parameters and to a reduc-
tion in computer time. Thus, if one has explicit and phy-
sically well-based ideas for the development of a smoothly
behaved shear model which will accurately model the physical
phenomena, then he should pursue these ideas. However, if
one lacks such specific ideas, he would be well-advised to
modify some existing shear model in an attempt to reduce its
erratically behaved shear-stress profiles.

Previously it was noted that a significant improvement
could be made in the CSM eddy-viscosity model if the constant
Kl was allowed to become a function of Mach number. However,
due to a large degree of scatter in the calculated values,
this functional form was not accurately defined. The accu~
rate specification of this functional form then is obviously
an area for further study. It might be possible, for

example, to determine the functional form of K, from exten-

1
sive experimental data for the turbulent shear stress and
the corresponding mean velocity profiles. This approach

zshould be pursued only after more extensive data is avail-

able for turbulent shear stress.
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APPENDIX A
DIFFERENTIATION FORMULA FOR A FUNCTION TABULATED

AT VARIABLY-SPACED VALUES OF THE ARGUMENT

A.l Analysis

Assume a function is given at several points as shown

in Figure Al. Let

Ar+ = Ly Ty (a.1)

and

Ay =r, - r, (A.2)

- i i-1

Now expanding W in a Taylor series about the point rs and

evaluating the series at r;_., and i+l yields

ow, ar? o%w,  ard odw,
W, . =W, - Ar_ + - +... (A.3)
i-1 i or 21 arz 34 3r3
and
BWi Ari azwi Ari 83Wi
Wi+l = Wi + Ar+ 5T + 57 + 3T + ... (A.4)
or or

Combining equations (A.3) and (A.4) so as to eliminate the

second order terms gives

SWi Ar_ Ar, Ar, Ar_
5t | AT, Miel T AR Wiel VO |EE T oam| Wi (ALt Ay
Ar_ Ar, 83Wi
- 77 3=t .. (A.5)

or
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Variably Spaced Points
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where the remainder or error term is

Ar_ Ar+‘ 33W(S)
31 8r3
and
Tiel 5 < Tin

(A.6)

(A.7)

Thus, equation (A.5) without the third derivative term is

a second-order differentiation scheme, since the error is

proportional to the product of two spacings of the argument

variable.

Equation (A.5) was used to calculate the first deriva-

tive of tabular, experimental, velocity profiles at all the

interior data points while the derivative on the wall was

calculated from the measured skin-friction value, and the

derivative at the last data point was taken to be zero.
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APPENDIX B

COMPUTER PROGRAM
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36536 sDEBOY» T200sCM 60000,P205L11000,
MAP (ON)
RUNI(S) e

LGO-.
[

PROGRAM MAIN(INFUTOUTPUTs TAPES=TINPUTsTAPE6=0UTPUT)

THE MAIN PROGRAM [s USED TO READ IN DATASEVALUATE DEFINITE
INTEGRALSs PERFORM MATRIX MANIPULATIONSs AND SET UP THE
INTEGRATION LOGIC

[a¥aNaXaka!

DIMENSION AINV(G9)sAINVSHIT)sF(50)sU(50)sFCT(50)sQINT{50)s
ACTsT)Y s ASINGLLIAT) sLWORKIT) sMWORKIT)Y e SHINTITYIoC( )
2 PRMT (51 sDERCI 7)Y sAUX(16+7)9PHIOI50) sPOLLEGI(8)
EXTERNAL DERIV,0QUTP
COMMON BITINITsAINVsSHINTsCFINITsREOX sQL s ICOUNTsNUSUsFos TEsUESNsTO
1 QIUE s ROE s RE INF o TW 9 QME »s GAMMA 9 NMUW s ROW s RESUBX s CF 9 As XSUBO s PHIO
COMMUON QK1sRE1SRE2
READ(5+503) NsNUsQL»XSUBO
READ{(55504) QMEsCFOsQMOMTUsTW
RFAD(53504) TE+PE TN 9sGAMMA
READ(5+504) RGASCSUBP,QK1
READ{55504) RE1,RE2
READ(5:502) (F(I)sI=1sNU)
READ(5+502) (U(I)sel=1sNU)

—

N= ORDER OF THE MWR APPROXIMATION
NU= NUMBER OF POINTS AT WHICH F(I) IS ENTERED
QL= FINAL VALUE OF LONGITUDINAL COORDINATFs FT
XSUBU= INITIAL VALUF OF LONGITUDINAL COORDINATE, FT
QME= FREE STREAM MACH NUMBER
CFO= INITIAL VALUE OF CF
QMOMTO= INITIAL VALUE OF MOMENTUM THICKNESSs FT
Tw= WALL TEMPERATUREDEGREES R
TE=FREE STREAM TEMPERATUREs DEGREES R
PE= FREF STREAM PRESSURE LB/FT#%2
TO= TOTAL TEMPERATURE IN THE FREE STREAM, DEGREES R
GAMMA= RATIO OF SPRCIFIC HFATS
RGAS= GAS CONSTANTs FT-LBF/LBM=-R
CcSuUBP= SPECIFIC HFAT AT CONSTANT PRESSUREs BTU/LBM-R
QKl=s OPTIMUM VALUE OF THE CONSTANT K1 IN EQUATION (2.12)
RE1 AND RE2= DOWNSTREAM VALUES OF REYNOLDS NUMBER (BASED ON X)
WHEREEVELOCITY PROFILE AND MACH NUMBER PROFILE OUTPUTS ARE
DFSIRED
F= INITIAL VELOCITY PROFILE FUNCTION IN EQUATION (3,39}
U= NONDIMENSIONALI?FD VELOCITY VALUES

2 ¥alaNalalaXa¥aYa¥a¥aXaXalakakaNaTakaEalaXa]

2 NMl=N-1
ICOUNT=~1

CALCULATE FLUID AND FLOW PROPERTIES

[aNaXal

OMUE=3 o 59E-TH(TE/692:)%%1e5%6846/(TE+192,)
QMUW=3459E=7# (TW/402. ) #%# 1 e5%684,/(TW+192,)
UF=OMF#49,02#SQRTI{TF)

ROE=PL/RGAS/TE/32.2

ROW=TE /TW#ROE

RE INF=ROE#UE*QL /OMUE

QOQG=2+ *QMUW#SQRT (RE INF ) #ROW/ROE/ROE /UE /QL

WRITE FLUID AND FLOW PROPERTIES

NN

WRITE(6+600) NU
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33
40

30

31
32

20

la

34

suUU
601
602
6V3
6V4

. 8V5
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TWRTTETES613T
WRITE(6:610) TELUEsPESROEIROWSRE INF
WRITEL6+601)
WRITE(6s602) (FLT),UlT)sI=1eNU)

SET INITIAL CONDITIONS ON THE C(J) COEFFICIFNTS

Ctl)=1,0

IF{NeFQel) GO TO 40
DU 33 I=2:N
Cli1=060

CONTINUE

EVALUATE DEFINITE INTEGRALS AND MATRICES AND PERFORM NECESSARY
MATRIX MULTIPLICATION AND INVERSION

DO 32 I=1sN

DO 31 J=1N

DO 30 K=1laNU

TYIAUML =2 #U(K 1 =10

IF(1aGEeJ) MAX=1~1

IF{JeGEal) MAX=J-1

CALL LEP(POLLEGs TWOUM1 ¢MAX)
FCT(K)=POLLEG(I1)*POLLEG(J)*U(K)*F (K)
CALL QTFG(UFCTsQINTNUY

A(I9J)=QINTINW)

CONTINUE

DO 20 I=1,NU

PHIO(I)=F(I)

WRITE{(69603)

WRITE(6:604) (tA(IsJ)sI=1sN)sJ=1sN}
CALL ~RRAY({23NsNsTs79ASINGLsA)
WRITE(6+605)

NSQ=N#*#2

WRITE(6+604) (ASINGL{I)aI=1sNSQ)
CALL MINV(ASINGLsNoDET s LWORK s MWORK )
NOW ASINGL IS THE INVERSE OF A

DO 1% 1=1sN5Q

AINVIII=ASINGLI(T)

WRITE(65606)

WRITE(69604) (AINVII)sI=19NSQ)
SHINT(1)=0,0
B1INIT=ROW/ROE*QMUW /QMUE

CFINIT = QQQ

REOX=ROE#UE /OMUE .
WRITC(69609) BLINITSCFINITRFOX

SPECIFY PARAMETERS REQUIRED TO CALL HPCGs AND CALL HPCG

PRMT(11=XSUBO/QL

PRMT(2)=140 e

PRMT(3)=,001

PRMT (4)=o01#C(1)

QN=N

DO 34 I=1sN

DFRC(1)=14./QN .

CALL HPCG(PRMT5CsDFRCosNs IHLFsDERTVsOUTPsAUX)

LYST ALL INPUT AND OUTPUT FORMATS

FORMAT(//s10Xs3HNU=5113s//)
FORMAT (/315X 1HF 219X s1HUs /)
FORMAT(2F?2066)
FORMAT{///739Xsb6HA({T s J)s/)
FORMAT(1E20,6)
FORMAT(///3:9X36HASINGL o/ )
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806
6U7
608
609

610
613

501
502
503
504

12

11

10

33
600
601
602
603
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EORMATU/7/39Xs4HAINV /]

FORMAT(///315X3sB5HSHINT s 14X s 6HAINVSH /)

FORMAT(2E20,6)

FORMAT(// /53X s THBLINIT=61E1446510XsTHCFINIT=51E1bebs
1L X s SHREOX=91F 14665/ /)

FORMAT (1X96E1966)

FORMAT(/7/ 418X s 2HTE» 17X 2HUE 3 17X s 2HPE s 16X s 3HROE s 16X » 3HROW ¢
16X s SHRE INF )

FORMAT (1120}

FORMAT (4F2066)

FORMAT(212052F2042)

FORMAT (4F2062)

N=N+1

FND

SUBROUTINE DERIV CONTAINS THE ORDINARY DIFFERENTIAL EQUATIONS
FOR THE C(J) COEFFICIENTS AND EVALUATES ALL TERMS IN THESE
ORDINARY DIFFERENTIAL FQUATIONS

SUBROUTINE DFRIVIZFTsCHyDERC)

DIMENSION AINV(4G) s AINVSHIT7) sBIT)sC(T)sATNVB(T) oDERC(T7) '
SHINT(7)sU{50)sF(50)sA(7s7)sPHIO(50)

COMMON BI1INITsAINVsSHINTsCFINITIREOXsQLs ICOUNTsNUsUsFsTESUESNsTN
QMUE s ROE s REINF » TW» QME s GAMMA » QMUW s ROW s RESUBX 9 CF 5 A9 XSUBO s PHIO

COMMON QK1sRE1,RE2 '

CJPHIU=0,0

DO 12 J=1sN

CJPHIO=CJUPHIO+CIJ)# (=101 %% (J=1)*PHIO(1)

DO 11 I=1,.N

B{I)=-HIPO(TI)#R1INIT/CJPHIO

CALL GMPRD(AINV.BsAINVBoNoMNs1)

RFSUBX=REOX* (ZET*QL)

CF=CFINIT/CJUPHIO

CALL SHINTE(C)

CALL GMPRD(AINVsSHINTsAINVSHsNsNs1)

DO 1V J=1N

DERC(J)=ATINVB(J)=ATRVSHI(J)

WRITE DESTRED OUTPUT VARIABLFS

IF(ICOUNT.EQs0}) Z=1COUNT

IF(ZETeLTeZ) GO TO 33

WRITEl6+602) ZET

WRITE(65603) (SHINT(1)si=1sN)

WRITE(65600)

WRITE(65601) (B(I)sAINVBI(I) »AINVSHII)sDERCII)eCII)sI=1sN)
2=2ET+401

CONTINUE

FORMA1 {12X o 1HB»21X s SHAINVB » 15X s 6HATNVSH » 15X s 4HDERC 3 15X s 1HC /)
FORMAT (5E204:6)

FORMAT(//31Xs4HZET=31F1246)

FORMAT (1X s 6HSHINT =0 1FE42)

RF TURN

FAD

SUBROUTINE OUTP EVALUATES AND WRITES DESIRED OUTPUT VARIABLES

SUBROUTINE OUTP(ZET»sCeDERCs IHLFsNDIMsPRMT)

DIMENSION CU7)eDERCU7) sPRMTI5)sAINVI49)sROSTTH(50)sU(50)sF(50)
T(50)sTOTE(50) , QMUOMU{50) sFCT(50) sROSTAR(50) sQNEW(50)»
THETA(S0) sQINT1S)) Y {507 sONEWE {50) sQNUEON(50) s SHFCT(501)
CHI(50)sX(50)sSHINT(T)sA(T37)sPHIO(50)

COMMON BLINITsAINVoSHINTCFINITSREOX QL s ICOUNToNUsUsFsTEsUEsNsTOs

QMUE sROE s RE INF 5 TW s QME s GAMMA s QMUW s ROW s RE SUBX s CF 4 A5 XSUBQ s PHI 0
COMMON QK1sRE1sRE2
PRMT(4)=501%C(1)
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TIPRTO=0, (7

DO 12 J=15N o _

CIPHIU=CJPHIOC(J)#(=~1,0)#%1J=1) #PHIO(1)

CF=CFINIT/CJPHIO

C.'A1J=0,0

DO 13 J=1sNH

CJALJ=CUATI+C(J1*At1sJ)

QMOMTH=QL /SQRT (RE INF ) #CJA1J

RFSUBX=REOX#* ( ZET*0L)

TF{ICOUMT.EQe0) Z=TCOUNT

TF(ZFTeLTaZ) GO TO 132

2=2ET+,01

WRITE(65660) RESUBXsCFsZET yQMOMTH

FORMAT (/335X s THRESUBX=91E1406910Xs3HCF=31E1406510Xs4HZET=
1F12.654X s THQMOMTH=31E1446)

WRITE(6+661) IHLF

FORMA'I {10XsSHIHLF=45112)

CONTINUE

RF TURN

FND

SUBROUTINE SHINTE EVALUATES THE SHINT(J) VECTOR REQUIRED IN
SUBRJUTINE DERIV

SUBROUTINE SHINTE(C)

DIMENSION ROSTTH(50)1sC(7)sU(50)sF(50)sT{50)sTOTE(50),
RUSTAR(S50) s THETA(S50)sQINT(50)sY(50)sETA(50) sUOUE(50) 5
QMUOMU(50) sFCT(50) sROOROE(50) sQNU(50) »

SHFCT(50) s SHINT(7) sAINV(49)sA(T7+7)sDUDY(50)+EPI(50)

EPO(50)sEP{50)+BETA(50)sPHIO(50)sTAU(50) »QAMOME(50)

DIMENSION TAUO(S50)sTAUI(50}s TAUIYM(50)

COMMON BlINIT»AINVsSHINToCFINITsREOX QL2 ICOUNTsNUSUsFoTESUESNsTO»
QMUE sROE s REINF 5 TWs QME s GAMMA s QMUW s ROW s RESUBX s CF s A3 XSUBO s PHI O

COMMON NK1sRE1sRE2

EVALUATE FLOW VARIABLES REQUIRED BY THE EDDY-VISCOSITY MODFL

NM1=N-1

DO 13 I=1sNU
222=2:#U{1)~10»

CALL LEP(QINT»2Z2ZsNM1)
CIPIM1=0,40

DO 10 J=15sN
CIPIMI=CUPIMI+C{NI*QINT (D)

- ROSTTH(1)=CJPJIMI*PHIOIT}/{1.~U(T1))

TUT)2TWH (1 e+ (TO/TW=1e)%¥J (V4 (TE/TO~1o) *TO/TWHU(T ) #%2)
TOTE(1)=T(1)/TE

ROSTAR{1}=1+/TOTE(T)
THETA(I)=ROSTTH(I)/RJISTARI(T)

CALL QTFGIUsTHETASQINT #NU)

DO 12 I=1sNU
Y(I)1=QL/SORT(REINF)*QINT(])

NDATA=NU

QNUW=0MUW /ROW

X=RESUBX/REOX

QNUE =MUE /ROE

NTOTAL=NDATA

DO 14 I[=1+NTOTAL
FTA(I)=SQRT(REINF)/QL*Y ()
UNUF (T =U( 1)

QMUOMU (1) =3,59E=-T/QMUE#(T(1)/692,)#%%#1.5%6844/(T{1)+192,)
FCT(:)=1e~UOUEI(T)

TOTE(1)=TLIY/TE

ROOROE (1}=1e/TOTE(T)

QNU(T) =QMUOMU( 1) #QMUE/ { ROOROE ( 1 ) #ROE )
CALL GWTFGIYsFCToGTNToNTOTALY
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PELEST=QINTINTOTAL)

PO 15 [=1sNDATA

FCT{I)=1,~-ROOROE { 1) *UOUE(])
CALL QTFG(YsFCTsQINTSNTOTAL)
DELST=QINT(NTOTAL)
DO 16 I=1.NDATA

DUDY( 1) =UE#SORT (RFINF)/QL/THETALT)
TAUW=DUDY { 1} #QMUOMU{ 1) #QMUF

EVALUATE THE EDDY-VISCOSITY PROFILE FROM THE CS5M EDDY-VISCOSITY

MODEL

DO 17 I=1,NDATA

ERPI(I)=QK1##2%#Y (1)1 ##2%(1s0-EXP(=Y(1)/26¢/QNU(])*
{TAUW/ROOROE(1)/ROE ) *#,5) ) #%2%DUDY (1)

FPO(I)=6e0168*UEHDELKST/ (1a0+55%#{Y(1)/YINDATA-L) ) %6

IF(EPI(I)LT.EPO(IY) EPIDI)=FPI(T}

IF (EPI(1)sGFR.EPO{TY) EPL{I)=EPOILI])

BETA(I)=1,0+EP(11/QNUILT)

EVALUATE THE SHINT(J) VECTOR

DO 30 J=1sN

DO 31 I=1,NU

222=2o%U11)~1s .
SHFCT(1)=QMUOMU (1) #BETA(T)/THETA (T} *HI2P(Js222)
CALL QTFG(UOUESsSHFCTsQINTsNTOTAL)
SHINT{J)=QINT(NTOTAL)

1COUNY=ICOUNT+1

IF(ICOUNT.NE«O) GO TO 19

WRITE (65623)

DO 18 I=1,NDATA
QINT () ) =QMUOMU( 1) *QMUE*BETA(1)*DUDY (1)

OMOME [ 1) =UOUE (1) #SQRT{1+/TOTE(I))

WRITE DESIRED PROFILES AND VARIABLES

MRITE(E5624) (DUDY(I)osEPILI)HZEPOLT)sYI)SUOUE(T)S

QINT(I)oQMOME(T)sI=1sNDATA)
FORMAT(//516Xs4HDUDY»16X93HEPI 616X 93HEPO217Xs1HY 916X
4HUQUE ¢ 14X 93HTAU 27X s SHQMOME 5 /)
FORMAT(1X+s6F19.691F1064)
WRITC(6+622) SHINT(2)sDELST
GO TO 21
FORMAT (10X »6HSHINT=51E2004540Xs6HDELST=51E2064)
CONTINUE
IFIRESUBXeGE.RE1s AND.RESUBXeLEe (RE1+:2F6)) GO TO 20
IF(RESUBX.GEsRE2. AND.RESUBXeLE«{RE2+4,2F6)) GO TO 20
CONTINUF
RETURN
END

FUNCTION HIZ2P CALCULATES THt SECOND DERIVATIVE OF THE WEIGHTING
FUNCTION HSUBI WHERE X= 2#UOUE~le THIS FUNCTION 1S APPLICABLE

UP TO AND INCLUDING THE SIXTH APPROXIMATIONS

FUNCTION HI2P(IsX)

GO TO(10520530540:50:60,70)51
H12P=0,0

RETURN

HI2P=-4,0

RETURN

HIZP=6o~184%X%

RFE TURN

HIZ2P=30e#X=60  #X#%RD+6,

RETURN
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HI2P=0 258 (620 #X#82-60,=-T00#X*#4+ 180, %X}
RF TURN :

HI2P=25254( 1260 #%%#23=0420%X~1890 %X %44BL0 ¥ X#%#2-30,)
RFTURN

CONTINUFE

RETURN

FND

FUNCTION HIPO EVALUATES THE FIRST DERIVATIVE OF THE WEIGHTING
FUNCTION HSUBI- AT UOUE= 0s THIS FUNCTION 1S APPLICABLE UP TO
AND INCLUDING THE SIXTH APPROXIMATION.

FUNCTION HIPOC(I)
GO TO(10520430540s50060570) 1
HlPO’-la

RFTURN

H‘PO=30

RFTURN

H1P0O=2-7s

RETURN

HIPO=113e

RETURN

HIPO=<21,
RETURN

HIPO=31,

RETURN

CONTINUE

" RETURN

FMD

THE FOLLOWING SUBROUTINES WERE OBTAINED FROM THE SUBROUTINE
LIBRARY OF THE PURDUE UNIVERSITY COMPUTER CENTER

MINV

eeeéoe’eut.cooeoecoeaaa.ol.oouaaoooo-oooooootllllQQQOICQQOQ‘teOCCQMlNV

SUBROUTINE MINV

PURPOSE
INVERT A MATRIX

USAGE ,
CALL MINV(AsNsDsLsM)

DESCRIPTION OF PARAMETERS

A - INPUT MATRIXs DESTROYED IN COMOPUTATION AND REPLACED BY

RESULTANT INVERSE.

N - ORDER OF MATRIX A
D - RESULTANT DETERMINANT
- L = WORK VECTOR OF LENGTH N
M -~ WORK VECTOR OF LENGTH N
REMARKS

MATRIX A MUST BE A GENERAL MATRIX

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
NONE

METHOD
THE STANDARD GAUSS-JORDAN METHOD 1S USEDs THE DETERMINANT
1S ALSO CALCULATED. A DETERMINANT OF ZERO INDICATES THAT
THE MATRIX IS SINGULAR.

SUBROUTINE MINV(AsNsDol oM}
DIMENSION A{11sL(1)eM(1)

MINV
MINV
MINV
MINV
MINV
MINV

. MINV

MINV
MINV

. MINV

MINV
MINV

MINV

MINV
MINV
MINV
MINV
MINV
MINV
MINV
MINV
MINV
MINV
MINV
MINV
MINV
MINV
MINV
MINV
MINV
MINV

001
002
003
004
005
006
007
008
009
010
011
012
013
014

015

0lé
017
018
0l9
020
021
022
023
024
025
026
027
028
029
030
032
033
034
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MINV

sps0oessoavso0dsansloeossPactesesbsRessevcctosatnsenssovdoeaaMINY

If A DOUBLE PRFCISION VERS{ON OF THIS ROUTINE 15 DESIRFDs THE'
C IN COLUMN 1 SHOULD BE REMOVFD FROM THE NDOUBLF PRECISION

STATEMENT WHICH FOLLOWS.

DOUBLE PKRECISION A¢DsBIGAHOLD

THE .C MUST ALSO BE REMOVED FROM DOUBLE PRECISION STATEMENTS
APPEARING IN OTHER ROUTINES USED IN CONJUNCTION WITH THIS

ROUTINEa

THE DOUBLE PRECISION VERSION OF THIS SUBROUTINE MUST ALSO
CONTAIN DOUBLE PRECISION FORTRAN FUNCTIONS

10 MUST BE CHANGED TO DABS.

ABS IN STATEMENT

MINV
MINV
MINV
MINV
MINV
MINV
MINV
MINV
MINV
MINV

- MINV

MINV
MINV
MINV
MINV

2058 D060 0828000060 Es000000000800cnb00R00c0ss0000besans0sdassoaMINY

SEARCH FOR LARGEST ELEMENT

D=1.0

NK=~N

DO 80 K=1sN
NK=NK+N
LK) =K

M(K) =K
KK=NK+K
BIGA=A{KK)
DO 20 J=K N
1Z=N%#{J-1)
DO 20 I=KsN
1Jd=12+1

1F({ ABS(BIGA)~ ARS{AL1J))). 15420420
Bi1GA=A(2))
Li{K)=]
M{gyel
CONTINUE

INTERCHANGF ROWS

Je=L (K)

TELJ=-K) 35:35,25
KlzK=N

NO 30 I=1sN
K1=Ki+N

HOLD==A (K1)
Jl=Ki=K+d
A(KIy=A(dD)
A‘;I’ =HOLN

INTFRCHANGE COLUMNS

f=M(K)

IFLI=K) 4%,45,:38
JP=N#{1=1)

DO 40 J=1sN
JR=NK+J

J1=JP»J
HOLD==~A( JK)
ALJKY=A(JT)
AtJ1) =HOLD

DIVIDF COLUMN RBY MINUS PIvoT {VALUF OF PTIVOT FLFMFNT 18§

CONTAINED IN RIGA)

MINV
MINV
MINV
MINV
MINV
MINV
MINV
MINV
MINV
MINV
MINV
MINY
MINY
MINMY
MINV
MInyY
MINY
MINY
MINV
MINV
MINV
MINV
MINV
MINV
MINV
MINV
MINV
MINV
MINV
MINV
MINY
MINY
MINY
wINY
MINY
MINY
MINY
MINV
MINV
MINV
"MINV
MInY
MMy
MINY
MTAY
MIny
MINV
MINV

63%
036
037
038
039
040
o4l
062
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
ne3
ne4
nee
(a1 1Y
nay
Aan
fao
070
071
077
073
074
07%
07«
077
ovn
A
0°0
0”1
oe?2
oR2
094
on:
086
087
0ORrRRA
Onn
070
0°1
002
001
0ns
oﬂl{
006
no7
ooe
0""
100
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D=0.0

RE TURN

DO 55 I=1sN

IF{I=-K} 50:5%,50
IK=NK+I

ALIK)=ALIK) 71=RIGA)
CON | TNUE

REDUCE MATRIX

DO 65 I=1sN

TR =NK+1

MOl N=A{ TK)
TJ=1=N

DO 65 J=1leN
1J=1J+N

IF(1=K} 60465460
IF{J=K) £2:865:62
Kd=1J=1+K

Al TJY=HOLD#AL(KJIY+A(T )
CONT INUE

DIVIDE ROW BY PIVOT

KJ=K=N

DO 78 J=1sN

K=K J+N

1F(J=K) 70575570
A{KI)=p (KJY/RIGA
CONTINUE

PRODUCT OF PIVOTS

D=D*RIGA

REPLACE PIVOT BY RECIPROCAL

AtKK)=1.0/BIGA
CONTINUE

FINAL ROW AND COLUMN

K=N

Ke(K=~1)

IF(K) 15001504105
I=L(K)

IFl1=¥) 1203120510R
JQ=aN#(K=1)
JR=N#(1=-1)

DO. 110 J=1,N
JK=2J0+J

HOl D=A( JK)
J1=JR+J
A{JK)==A(J1)
AlLJI) =HOLD
J=M(K)

IF{J=K} 1001005125
Ki=K=N

DO 130 I=1,.N
KI=KI+N
HOLD=A(KI)
JIlzK1-K+J
A(KIy==A1J1)
ACJTY =HOLA

60 TA 100

143 -

INTFRCHANGF

MINY
MINV
MTNV
MINV
MINV
MTNV
MINY
MINV
MINV
MINY
MINV
MINV
MINV
MINV
MINV
MINV
MINV
MTINV
MINV
MINV
MINV
MINV
MINY
MINY
MINY
MINV
MINY
MINY
MTNV
MINY
MIny
MINV
MINV
MINV
MINV
MINY
MINV
MINV
MINV
MINV
MMy
MINnY
M TNy
MINY
L LY
MINY
MINV
MINV
MINV
MINV
MINY
MTNV
MINV
MINV
MINV
MINV
MINY
MTNV
MINV
MTNVY
MINV
MINV
MINV
MINV
MTAY

Al

ol
102
102
10/|
105
10~
107
108
100
110
(AR
112
112
[{o}]
114
11%
114
117
11
1
~Mo?
121
122
12°
12h
175
174
197
12e
177
120
131
132
123
1y
12
126
137
130
170

a0

141
49
1472
1ha
145
148
147
AL
140
180
181
182
]f\ﬂ
184
188
184
187
18R
Y
1480
161
142
142
"

165
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%0 WETURN
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END
SUBROU T THE GMPRD
PURPOSE -
MULTIPLY TWO GFNERAL MATRICES TO FORM A RFSULTANT GFNERAL
MATRIX

USAGE
CALL GMPRD({AsRsRsNeMolL)

DESCRIPTION OF PARAMETERS

A = NAME OF FIRST INPUT MATRIX
B ~ NAME OF SECOND INPUT MATRIX
R ~ NAME OF OUTAUT MATRIX
N - NUMRER OF ROWS IN A
M - NUMBER OF COLUMNS TN A& AND ROWS N R
L - NUMBER OF COLUMNS IN B
RE*ARKS

ALL MATRICES MUST BE STORED AS GFNFRAL MATRICFS
MATRIX R CANNOT BE IN THE SAME LOCATION AS MATRIX A
MATRIX R CANNOT BE IN THE SAME LOCATION AS MATRIX B

MINY 166
MINV AT
AMPRNBO?
GMPROADA
GMPRNHOOS
AMPRNOO#®
GMBRNANO T
GMBRNINO®
GMPRNOO"
GMPRNBI1 0
GMPRMNO11
GMPRNQY
GMPRNOL1?
EMPRNO14
AMDOARYE
rfunonnY g
(ALl LY S
cMDR™A(18
CMPRMOL Y
GMPRDO?0
GMPRDO? 1
GMORNOD2 D
GMPRNO2?
GMPRNO? %

NUMBER OF COLUMNS OF MATRIX A MUST RF FQUAL TO NUMBER OF ROWGMPRDA?&

OF MATRIX B

SUBROUTINES AND FUNCTION SUBPROGRAMS RFQUIRED
NONE

METHOND
THE M BY L MATRIX B IS PREMULTIPLIFD BY THE N BY M MATRIX A
AND THE RESULT IS STORED IN THE N BY L MATRIX R.

OMPRNO2 &
GMPRDO?7
GMPRNO? A
GMPRDO?2©
GMPRD020

" GMPRNO?1

GMPRDO2?
GMPRDO%3
GMPRDO 34

oeeooe?oaapooaeoeoeooaenooc.ooocaooooono-oeaeoosanoeecaoioooogoeeeGMPRDO35

SUBROUTINE GMPRDEIASRoRsNoMsL)
DIMENSION A{1)sBI{1)oR(Y)

IR=U

IK=-M

DO 10 k=1L
IK=IK+M

DO 10 J=1sN
IR=IR+1
Ji=J=N
IB=1IK
R(IR)=U

DO 10 I=]1.:M
Ji=JI1+N
IR=IR+1
R{IR)=R{IRYI+ALITI®B(13])
RE TURIN

END

GMPRDO36
GMPRDO37
GMPRD0 38
GMPRDO39
GMPRDO4O
GMPRDO&1
GMPRDO0O&2
GMPRDO4 2
GMPRDO&G
GMPRD04S
GMPRDO46
GMPRDOA 7
GMPRDOA 2
GMPRNOAC
GMPRDOSD

GMPRDOS

GMPRNQ& D
GMPRNO& 2
GMPRNQR 4
ARRAY(0O1

GOGO!O'OO@QQQ&QQ@RSQO@QO&E@OOB‘QQOOQODQOGOQQQBO&QOGCOOGﬂ‘ﬂo@&n&i&!ARRAYoo?

SURROUT TNE ARRAY

PURPOSE
CONVER! DAtA ARRAw FROM SINGLLC TO NDOURLF NIMENSTON OR VICF
VERSA, tHIS SUBROUTINFE 1S USED TO LINK THF USFR PRNOGRAM
WHICH HAS NOURPLE DIMENSION ARRAYS ANN THF SSP SURROUTINFS
WHICH OPERATFE ON ARRAYS OF DATA IN A VECTOR FaSHINN,

HISAGE

ARRAY 00?2
ARRAY Q004
ARRAY005
ARRAY00%
ARPAYQO7
ARBAY QOO
ARRAY QOO
ARRAYO10
ARRAYO11
ARRAY 012
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TAUL ARRAY (MO"1 51 adaNsi35s00) ADBAYQYA
ARRAY014

DESCRIPTION OF PARAMFIERS ARRAYD1®
MODE - CODF INRICATING TYPE OF CONVFRSION ARRAYDYS
1 - FROM SINGLE TO DOUBLF DIMFNSINN APRAYQY7

2 « FROM DOUSLF TO SINGLF RIMENSTAN ARRAYO19

1 - NUMRFR or RrOWS I8 ACTUAL DATA MATRIX ARRAYN1IN
J - NUMRER OF COLUMNS [N ACTUAL NATA MATRIX ARRAYQ20
N - NUMRER OF ROWS SPECIFIHD FOR THF MATRIX D IN ARRAYN?1
DIMFNSTON STATEMFNT BRRAYO??

. - NUMBER OF COLUMNS SPECIFIED FOR THE MATRIX D IN ARRAYN??
DIMENSION STATEMENT ARRAYO?4

5 - IF MODF=1s THIS VECTOR CONTAINSs AS INPUTs A DATA ARRAYQ?®
MATRIX OF S1ZE 1 BY J IN CONSFCUTIVF LOCATIONS ARRAY02h

COLUMN~WISE, IF MONF="% [T CONTZINS A DATA MATRIX ARRAYN™Y?
OF THE SAMF SIZE AS OUTPUT. THF LENGTH OF VFCTOR S ARRAYQ?®

1S 1Js WHERE IJ=1#Js ARRAYQ?Q

D - [F MODF=1s THIS MATRIX N Y M) CONTAINS, AS OUTPUTs ARRAYN30

A DATA MATRIX OF SIZE 1 BY J IN FIRST I ROWS AND ARRAY(?]

J COLUMNS» IF MODE=2s IT CONTAINS A DATA MATRIX OF ARRAYQ3?

THE SAMF SIZE AS INPUT. ARRAYDR2

ARRAYO2H

RFMARKS ARRAYQD3&
VECTOR & CAN AF IN THF SAMF LOCATION AS MATRIX De VECTOR S ARRAY(03A

1S REFERRED AS A MAIRIX IN OTHER S$SSP ROUTINES,s SINCE IT ARRAYO037
CONTAINS A DATA MATRIX. : ARRAY038

THIS SUBROUIINF CONVERTS ONLY GENFERAL DATA MATRICES (STORAGEARRAYOD39

MODE OF 0. ARRAYQ4Q
ARRAYNALT

SUBRQUT INES AND FUNCTION SUBROUTINFS RFQUIRED ARRAYQON?
NONE i ARRAYQA
ARRAYON A

METHOD . ARRAY QLS
REFER TO IHE DISCUSSION ON VARIABLE DATA SIZF IN THE SECTIONARRAYO46
DESCRIBING OVERALL RULES FOR USAGE IN THIS MANUAL. ARRAYO4T

' ) ARRAYOQ4S8

fs 0P80 0ABEs9scseslensteenBonobosesadetacasonosenssadessansocessses ARRAYD4LO
ARRAY050

SUBROU I INE ARRAY (MODE2TsJ9sNsMsSeD) ARRAYOS1
DIMENSTION S{13sD11) ARRAY052
ARRAYD53

NI=N-I ARRAY0S54
ARRAYO55

1ES1T 1YPE OF CONVERSION ARRAYO0S56
ARRAYQS?

IF(MODE~1) 1UUs 1UO0s 120 ARRAYQOR R
. ARRAYQSC

CONVERt FROM SINGLE 10 DOURLF DIMFNSION APBAYNGO

s ARRAYOAT

100 1J=1%0+1 ARRAYQOS?
NM=aN#J+1 ARRAYQ®"
DO 110 K=1le.J ARRAYQ&#
MMaNM=-N | ARRAYQ<®
DO 110 L=1,1 ARRAYDEA
1JelJ=1 ARRAY(S 7
NM=NM -1 ARRAYOQ%®@
110 D(NMYI=b(TJY ARRAYQ&O
GO 10 140 ARRAYO70
ARRAYO71

CONVERI FROM DOURIFE TO SINGLF NIMENSTANM AROAYDT2
ARRAY(Q7??

120 1Js0 ARRAYQ74
NM=0 ARRAYO0OTS
PO 130 K=1.J ARRAYNT4
DO 125 L=1l1 APDAYAT?

[J-1J+1 APDAYLT
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125
130

140

rAN

AM=NM+ |
SEEJ =D tNM)
MM = NM+R T

RF TURN
END

[ XA R E XX EE AR EEE NN ERFRNNEEENRERE NN N EEN RN EEN RN NN EXNERENE NN NN NER XN

SURROUTINF Q

PURPOSE
10 coMmpunt
GENFRAL T

USAGLE
CALL QT+G

DESCRIPITON
X -
Y -
Vi -
NDIM -

REMARKS
NO ACTION

SUJROU | INES
NONE

ME t HOD
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TFG

£ IHF VECTOR OF INTFGRAL VALUFS FOR A GIVEN

ARLF OF ARGUMENT AND FUNCTION VALUFS,

(XsYsZsNDIM)

OF PARAMEIERS
tHE INPU! VECIOR OF ARGUMENT VALUFS,

tHE TNPU! VECIOR OF FUNCTION VALUES,
IHE RESULTING VECTOR OF INTFGRAL VALUES,

IDENTICAL WITH X OR Y.
JHE DIMENSION OF VECTORS XsYsZe
IN CASE NDIM LESS THAN 1.

AND FUNCIION SUBPROGRAMS RFOUIRED

2 MAY RE

BEGINNING WIIH ZU11)=Uy EVALUATION OF VECTOR 2 1S DONE BY

MZANS OF
FOR REFFR
FeBoHILDE
MCGRAW~-HT

0600002000009 830306006096823000000900000200400000600000CHERGEEETBRDED

SUBROU I [NE QTFG

DIMENSION X(1)s

SUM2=0,
IF(NDIM~1185351

INTEGRAITION LOO
DO 2 I=2eNDIM
SUMI=bUM2
SUM2=SUM2+5# (R
L{T1=1)=5uM]
LZINDTM) =5UM2

KE JURN

END

[ ENEENEERERNNEENENNEEENFENTENEELNNENENENENEEENNFRNENEXNE RN NN RN RN W IW WY

SUBROUT INE

PULPOSE
COMPUIE |
FOR ARGUM

UdALE

IRAPEZOIDAL RULE (SECOND ORDER FORMULA}.
ENCF, SFF

BRANDs INTRODUCTION TO NUMFRICAL ANALYSIS,

LLs NFW YORK/TORONTO/LONDONs 19565 PPs75.

(XsYeZsNDIM)

Y{1)eZ21(1)

p

(IY=xti=1)1)18lYtL4Y(I=-1))

LEP

HE VALUES OF IHE LFGFNDRI POLYNOMIALS P(NoX)

ENT VALUE X AND ORDFRS 0 UP TO Ns

APPAVATA
ARRAYORO
ARRAYOR]
ARRAYORD?
ARRAYNR3
ARRAYOQBA

TFG
TFG
TFG
TFG
TFG
TFG
TFG
TFG
TFG
TFG
TFG
TFG
TFG
TEG
TFG
TFG
TFG
TFG
TFG
TFG
TFG
TEG
TFG
TG
TFG
TFG
TFG
TFG
TFG
TFG
TFG
TFG
TFG
TFG
TFG
TFG
TFG
TFG
TFG
TFG
TFG
TEG
TFG
TFG
TFG
TFG
TFG
TFG
TFG
TFG

001
002
003
A s I}
005
006
007
008
009
oto
011
ol2
013
0la
015
n1s
017
018
olg
020
021
022
023
024
025%
026
027
028
02
020
021
032
033
034
0235
036
037
02R
039
040
041
042
043
044
045
046
047
048
049
050
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CALL LFEP{YsXeN)

DESCRIPITON OF PAPAMETEPRS
Y « RFSULT VFCINR OF DIMENSION N4l CANTATMTNG THE Vafues
OF LEGENPRE POLYNOMIALS OF ORNFR O UP TO N
FOR GIVFN ARAUMENT X,
VALUES ARE ORDERFD FROM LOW TO HIiGH ORDFR
A - ARGUMEN! OF LEGENDRE POLYNOMIAL
N = ORDER UF LEGENDRF POLYNMOMTIAL

REMARK S
M LESS tMAN U 1S5 IRFATFD AS [F N WFRF O

SUBROUIINES AND FUNCIION SURPROGRAMS RFQUIRED
NONE

MF 1 HOD
EVALUATION IS BASED ON THE RFCURRFNCF FQUATINN FAn
LEGENDRE POLYNOMIALS P(NsX)
PAN+T o XY =2#XEP(NoX)=P{N=1aX )= (X#P (NoX}=P{N=-T X))/ (N*1)
WHERF THE FIRST TERM IN HRACKETS 1S THF ORNDFR,
IHE SECOND IS THE ARGUMENT,
S1ARIING VALUFS ARE P(UsX)=ls PllsX)=X

2990000600089 0000000000000c0R00EGA000000000000A000060800006800006800
SUBROUITINE LFPIYsXsN)
DIMENSION Y1)

TEST OF OROER

Y(l)=le
TF{N)Llsle2
RFTURN
Yi2)=X
IFIN=1)15143
DO 4 1=2sN
G=x*v(1)
Y142 =G~y (I~1)+G=(G=Y(I=1))/FLOATI(T)
RETURN
FND
BCG Ao
pPCh nn?
0B DPBP 3002890000830 9009 3008800000080 08 090030000 PaRNERGPR9RERR2BRGEERSD P(.G nn3
PCG 004
SUBROU L TNE HPCG PCG 00"
PCG 006
PURPOSF ocn nnT
10 SOLVE A SYSIFM OF FIRST ORNDER DRNTINARY GFNFRAL nes Qor
DIFFFRFNTIAL FQUATIONS W+TH GIVEN INITIAL VALUFS, pes an”
PCG 010
USAGE PCG 011
CALL HPCG (PRMToYsDERYsNDIMe IHLF o FCT20UTPsAUX) pcr 0172
PARAMETERS FCT AND OUTP RFQUIRE AN FXTFRNAL STATEMENT. PcG 017
PCG 014
DFSCRIPTION OF PARAMFTFRS . pres p1*
PRMT - AN TNPUT AND OQUTPUT VECTOR WITH DIMENSIONM GRFATFR pre 016
OR FAIAL TO &¢ WHICH SPICIFISS THE PARAMETFRS OF pra 017

THE INTFRVAL AND OF ACCURACY AND WHICH SFRVES FOR PCG o1
COMMUNITCATION RETWEEN OQUTPUT SUBROUTINE (FURNISHED PCG 017

BY THF USER) AND SURROUTINE HPCGs [XCFPT PRMTU®) PCG 070
THE CcOMPGNENTS ARE NOT DFSTRNYFD RY SURROUTINE pCca oM
HPCG AND THEY ART nen o oQre

PRUT (1 F= 1 AREN RAYMR ~E THE (aTrsyA) 1 tmgT g, rer A3
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Rt £21 urrBEr JUUND UF IHE TNTERVAL {TRPUT)

PHRMI (31~ INTITAL INCRFMFNI OF IHE INDFPFNDFNT VARIARBLF
(INPUT )Y

PRMT(6)~ UPPER FRRCOR BOUND (INPUT)e IF ARSOLUTF FRROR IS
GREATFR THAN PRMT(4)e INCRFMENT GFTS HALVFDs
1F INCPREMFANT 1S LISS THAM PRUTIZ) AND ABSOLUTE
ERROR LFSS THAM PRMT(4)/%0s INCRFMFNT GETS DOURLFD
THE UISFR #MAY CHANGE PRMT(4) Y MFANMS OF WIS
OUTPUT SUBRROUTINE .

PREMT(5)~ NO INPUT PARAMFTFR, SUBROUTINE HPCO INITIALLIZFS
PRMT(6)=0, IF THE USFR WANTS TO TFRMINATE
SURROUTINE HPCG AT ANY OUTPUT POINT, HF WAS TN
CHANGE PRMT(®) TO NON-ZERO RY MEANS OF SUBROUTINF
OUTP, FURTHER COMPONINTS OF VFOTOR PRMT ApE
FEASIRLE F ITS DIMENSION IS DFFINFD NRFATFR
THAN 56 HOWFVER SUPRQUTINF HPCHR DAFS NAT RFENYJTBF
AND CHANGFE THEMe NFVFRTHFLESS THFY MAY RF USFFy)
FOR HANDING RESULTY VALULS TO THF MATN PROGRAM
(CALLING HPUG) WHICH ARE OPTAINED RY SPFCTAL
MANIPULATIONS WITH OUTPUT DATA IN SURROUTINE NYTO,

Y - INPUT VFCTOR OF INITIAL VAIUFS. (NFSTROYFN)
LATEPNM ¥ 18 THF RFSULTING VECTNR NFE NEPENNENT
VARIABLES COMPUTED AT INTFRMFNTATF POINTS X

DERY ~ INPUT VECTOR OF FRROR WFIGAHTS, {(DFSTRAYER)

THE 3U4 OF 178 COMPONFNTS MUST RF FOUAL TH 1,
LATERON DFRY 1S THE VFCTOR NF NFRPIVATIVFS, WHiru
BELONG TO FUNCTION VALUFS Y &7 A ONIMT X,

NDIM - AN INPUT VALUF, WHird sprcIrirs TH- nymnre of
EQUATIONS IN THF SYSTFM,

IHLF - AN OUTPUT VALUFs WHICH SOFCIFITS THE NUMPBEP NF
BISECTIONS OF THF TNITTAL TMCRFMENT, I8 THLF AFTS

© GREATFR THAN 10s SURRNUTINF MOrn PETUPNS WITwW
ERROR MFSSAGF THLF=11 INTO MATIN PROMRAM,
ERROR MFSSAGF THLF=12 NR TWlF=13 APREADS M CFAGE
PRMT{2)=0 OR IN CASF SIGN(DRMT{2)) NE,STAN(POMT(2)-
PRMT(11) RFSOFCTIVFE| Y,

FCT - THE NAME OF &N FXTFRMAL SURPAYTINE UYSFn, IT
COMPUTFS THF RIGHT HAND SINFS NFRY N TUE SygTess
TO GIVFN VALUFS OF X AND Y, 1TS DARPAMETED | TST
MUST E? XsYeNFRY: THF SURRNUTINF SunyLn m0T
DESTROY X AND Yo

ouTP ~ THF NAMF AF AN FXTFEOMAL AUTRUT SURPAUTIME ySER,
ITS PARDAMFTFD | 1ST MUST RBF XsYeNFTY o THLF sNNIMeORUT,
NANE NF THFSF NADAMETERS (EXCFEPTy 1F MNFCFSSARY,
PRMT{4)ePAMT{B)ssea) SHOULN RF CHAMAENR RY

SUBROUTINF OUTP. iF PRMT(5) IS CHAMAEN TN MOM=2FRQ,
SUBRAUTINE HDCA 1S TFRMINATEN,
AUX — AN AUXILTAPY STARAGE ARRAY WITH 1€ RAWS AMR MR
Cnt Uuns,
REMARKS

THE PROCEDURF TFRMINATES ANN RETURNS TN CALLTNA DPARRAM, [F

(1) MORE THAN 10 BISECTIONS OF THF INTTIAL INCRFMFNT ARC
NECESSARY TO GET SATISFACTORY ACCURACY (FRROR MFSSAnF
THLF=11) e

(2) INTTIAL INCREMENT IS FQUAL TN 0 NR HAS WRANA Siew
(ERROR MESSAGES IHLF=1? OR IHLF=1")s

(2} THF WHOLF INTFGRATION TNTFRVAI 1§ WARKEN Tyoayni,

(4) SURROQUTINF OUTP HAS CHANGFD PRMT(5) TO NON=ZFRN,

SUBROUIERES AND FUNCTION SURPROGRAMS RFOUTRFN
THE EXTERNAL SURROUTINES FCT(XoYeNFRY) ANN
OUTPUIX:YsDERY s THLF s NDIMsPRMT) MUST RE FURNISHFD RY THF SFR,

METHOD
EVALUATION [S DONT BY MFANS OF WAMYMIMN,S MANTPr~ DRFENY~TNAR.

pre
PCG
PCG
PCG
PC6
pce
34
pre,
pee
pea
peo
Pee
pcr
peo
Pen
pee
pre
nce
nCG
°CG
1<
ree
pee
PCG
pch
4]
PCG
PCG
PCG
PCG
reG
Lldd
PeeG
PCG
2dd
PCG
PCG
PCG
PCG
PCG
PCG
PeG
PCG
PCG
PCG
neG
neG
PCG
PCG
PCG
pce
pCG
neeo
PeG
[2leld]
PCG
neG
rea
PeG
Tad
e
PCG
[-Tel D
nen
nee
[l

nX Y
025
026
027
n?°
02"
020
6”1

az

0?2
n*4
02%
036
037
L]
nie
040
N4l

na2
043
AL4
nLs
LG
ALT
ALA
(Y]
nSn
n51
052
n53
n54
ASE
056
n57
n58
059
neo
A6l
ne2
AG?
(o738
nes
ne6
ne7
68
069
n7e
n71

arr
N7

N7y
n7s
074
077
AR
n79
ngn
ngl
082
na?
084
N85
nng
faliled
noo
nrRa
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CARRECTA® METUAP, T 1§ A FOURTH QRPER pe .
PRFCFENING POINTS FOR COMPUTATION nF A NFy

DEPENDEN] VARIABLES.

FOURTH ORDER RUNGF-KUTTA MFTHOD SUGHFSTFD RY ... "N
USFD FOR ADJUSTMENT OF THF INTTTAL INCRFMONT AMD ENADR
COMPUTATION OF STARTING VALUFS.

SUBROUTINE HPCG AUTOMATTCALLY ADJUSTS THF TaMroEMEMT NP TMG

THE WHOLE COMPUTATION RY HBIVING nD nnyep T,

10 GFiI FULL FLEXIBILITY IN OUTPUT, AN nUTBUT SUSPNAUTIMF

MUSt BE CODED BY IAf USER.
FOR REFERENCE. SEE

(1) RALSTON/WILFs MATHEMATICAL METWANG &nn DiaTTAL

COMPUTFRSs WTILFYs NMFY YARY 7j nunns, 19405 PP, 05-109,
(?2) RAISINN: RUNAF-KUYTTA METHANS WITH “INTMUM FRROR BOINNSS

MIACs VOLs1As I85.R0 (1023), ONP,A21=077,

2948220080 ae0880023ehaBRIBTHBIROIBCIINBOVRNOROCC0I0GBRBG0B2C0800006H9

SUBROAU I TNF HROG(OPMT g Yo NERY yMNTM, TULE g€ TonUTP o AUX)

NIMEMSTAN PDMT (1) oy (1) s"TRY{ 11 AUXL1651)
N=1

IHLF=0

X=PRMT (1)

H=PRMT(3)

PRMT (51 =0,

6 1 t=1,Nhim
AUX(18s1)1=0,
AUX(15sT)1=NFRY (T}
AUX(1sI)=Y(T)
fTE(HB(PRMT(2)=X) )77 ,44

ERROR RETURNS
IHLF=12
GOTO &
IHLF=13

COMPUTATIAM NE NEDY FAR STARTINA VALUSS
CALL FCTU{XsYsDERY)

RECORNING NF STARTING VALUSS

CALL OUTP(XsYsPERY s THLF gMDTM,NRMT )
IF(PRMT (5] ) 6554

IFLIHLFY 75756

RE TURN

DO 9 I=1,NDIM

AUX(Rs1)=DFRY(T)

COMPUTATION AF AUX(?+1)
15w=1
GOTO 100

XaX+H

DO 10 T=1,4NDIiM

AUX(2:1)=Y( 1)

TNCREMERIT Lt TS TFSTEN OY MEAMS OF o{§erTinn
THLF=11,.LF+1

X=X-H

DO 12 I=1.NDIM

AUX(4eT)=AUX(251}

He o 5#H

N=1
ISu=2

GNTO 100

pre.
pea
Pce
preo
nen
npeo
prr
Td¢]
idd
PCG
PCG
PCG
Pe6G
»CG
PCG
pea
PCG
pen
PCG
PCG
dd¢]

1 1ad
PCG
PCG
PCG
PCG
PCG
PCG
PCS
pee
pCG

PCG

PCG
pLG
PCG
PCG
oCG

.PCC

pCG
pPLCG

.. PCG.

PCG
PCG

. PCG

PCG
neG
PCG
ad
PCG
PCG
PCG
PCG

PpcG

pCG
PCG
PCG
pCG
Jdd
PCG
PCG
PCG
Bee
PcG
PEG
PCG

non
071
0n?
072
noa
N9s
A96
no7
nog
nso
100.
101
102
103
104
105
106
1n7
108
109
110

11?
112
114
115
116
117
tir
119
120
121
122
123
124
125
126
127
128
129
130
131
132
132
124
1138
128

117

1an
139
140
141
142
143
144
1a4=
148
147
148
149
1590
181
182
(&2
154
155
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14

15

16

17

18

19

.20

21
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Xa= ¥+H

CALL FCT{XsYsDERY)
N=2

DO 14 I=1,NDIM
AUX(2s1)=Y (1)

AUX (0, 1)=DFRY(T)
1Sw=3

GOTO 100

COMPUTATION OF TEST VALUF NPELT

DELT=0.

DO 16 [=1,NDIM

DEL I =2DELT+AUXI IR TV #ARSIY(TY~AUX(4s1))
DELT2:U666KAATH#DELT
TEINFLT-DPMT(41)10,10417
IF(IHLF-10)11,1R510

NN SATISFACTNRY ACr|IPACY AFTFO 10 SISTrTINNG, MDPNAD MrGSART,
[HLF=11

Xz X+H

GOTO 4

IHERE 1S SATISFAC|IIRY ACCYRACY AFTER 1 FSS TUAM 11 PISFCTINNS.
Xa X4+H

CALL FCItXsYsDFRY)

DO 20 I=1:NDIM

AUX(3es1)=YL])

AUX(10»1)=DERY LI

N=23

1sw=a

GOTO 1L0

N=1

Ko X+H

CALL FUT(XsYeNERYS
K=PRMT (1)

PO 22 1=1sNPIM
AUX(11sT)=NE0Y(T)

22017 =AUXTT o TT4H# {1752 AUKIB s 1)+ 791666 T8 A1)

23

24

28

24

27

7R

29

30

1-e20022232AUX{ 1071+, 04 16RAATRDFRY (1))

K= X+H

N=N+1

CRLL FOT(X.Y"FOY)

CALL NUTPUXsYsNERY 5 fULFpaNTa,nhaTy
TE(BPMTIRY ) &,74 44
IF(M=0)26832005°00

DO 26 T=13NNIM

AUXINsT Y=Y (11

AUX(N+ToTY=NERY{])
TF(N=2)27;,90,4,°00

PO 22 T=1sNNTM

DELT=sAUX{Qs[)+AUX (1)

DELT=DELT+DELT

YT =AUX (1574432222222 [AUX (R, 1Y +NFLTLAUX(10s1))
GOTO 23 .

DO 30 I=1+NDIM

DE@T=AUX(95 1) +AUX(10s1)

DELT=NELTHNELT+MO™LT

YOT) =AY TY+.275%00 % (AUX{B TY&NEL THAYX {117
ANTO 23

Beo
PCe
reG
nen
(ool o
pre
pen
peo
oce
LIQd
oen
PG
- {aic}
Jod
pen
L 1dd
L 1dd
pCn
nen
oCG
pCe
nPCG
PCG
PCG
PLG
PCG
PEG
PCG
PCG
PCG
PCG
PCG
PCG
PCG
ad
PG
PCe
PCG
Jad
PCG
1
Jdd
pCG
PCG
PCG
o
PCG
PCG
PCG
PcG
PCG
PCG
lad
PCG
e
PCG
PCG
pCh
PCG
PCh
och
Jad
Llad
PCG
PCG
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156
157
1en
"ﬁﬂ
1ra
v’l"
1&D
1467
164
18¢%
166
157
169
167
17A
171
172
172
174
178
178
177
178
179
180
181
182
182
14
185
126
187
188
1r9
170
101
19?2
197
194
195
196
197
iea
199
200
kdah
20?
203
2na
205
276
207
eda 3]
200
”21n
211
”12
e Bt
*1a
215
?14
217
S 8
210
226

LR



C pen 22
C RUNGE-XUTTA METHOD STARTING VALUFS FNRITHE NNT SFLF=STADTIMNG PG 223
C PREDICTOR~CORRECTOR MFTHON. neG 224
100 DO 101 1=1.NDIM PCcc 228
Z=MBPAUNINGT 1) ore; 226
AUX(8,1)=2 PCG 207
101 Y({i)=AUX(NeT)+.022 PcG ppoe
C 2 1S AN AUXTLIARY SToPARE LACATION DCH 229
C CG 230
ZaX+ob%H . BCG 271
CALL PCTU(Z5YsDERY) PCG 232
PO 107 T=1,NNTM ld LA
Z=H*DERY{ 1) PCG 234
AUX(6e1)=2 . PCG P98
102 YUI)2AUXINGI)+,208077#8UX{Ro])+.18RTEOREZ PCG 2156
¢ ’ ' BCG 227
2R+ hRBT2T7IH#H pCG 278
CALL BCTIZsYsDERY) PCG 239
NO 107 f=1,NNIM PCG 240
2=HENFRY (T PCG 241
AUY(Ts1)=2 . RPCG 202
T10% Y11 =AUXIN,T1+,2121004%AURT5:11-3,050965%A0%RT6,1)+3,832865%2 PCG 243
C PCG Pa4
ZaX+H PCG 4%k
CALL FCT{Z,YsDFRY) PCG 246
PO 1046 T=14NNIM PCG 747
1040Y(1)sAUX(N 1141747207 %AUX (G313 =a5814R07#AUX(661) orc 248
T TR 0088 RR¥AUXI T 14 1T IR ANSHREDERY (1) eCG 249
GOTO(Qs124154321)518W PCG 250
C **-ﬁ*#ﬁ******l********&*****#*****************************l**}&li** PCG ?51
T ' o ' pPCG 252
C " PCG 257
C POSSIBLE BREAK=POINT FOR LINKAGE _ PCG osy
< ' BCH D&
C (B Y
C STARTING VALUFS ARF COMPUTFN, s BCG 257
< " NOW START HAMMINGS MPOYIFIED PRENICTAR~CARDT~TND uFanD. PCG 258
2U0 [STEP=3 PCG 259
_2V]1 TFIN-8)206452029204 . . el PCG 260
C i orcG 261
C N=° CAUSES THF ROWS OF AUX TO CHAMAE THEID STNRARE { OCATINAMS PCG 262
202 DO 203 N=2:7 S, _PCG 263
TTTTTTURG P02 TV NNTHM PCG 264
AUXIN=1sT)=AUX{N. ) PCG 265
203 AUXIN+651)=AUXIN+751) . PCG 266
T N=T ' BCGE 247
C PCG 24P
d M LFSS THAM 8 CAYSES M+l TH GFT W . PCG 269
T 20 Newsy PCG 270
C pPCG 971
C CrVPYTATINN NF NEXT YFCTAR v PCG 272
DO 208 121 ,4NDIM peG 277
AUXIN=-T51)aYi]) PCG 274
_ P08 AUX{NaRT)=NEOY(T) PCG 275
Xu¥+H PCG 276
206 18TFP=1STFDad REG 277
DO 207 T=9,NOTH : o PCG 278
ODFLT2AUR (Mel g} 141 o 25222 2813 { AUX{M2B 51 )2 AUX (M+6 o 1)~ AUX(M=54T )4 PCG 279
1AURIN+G s T 1 +AUR (Meb ot ) PCG 280
YE7)1eNE| Te 028210020 (17 1) PCG 281
T P07 AUXtIes 1) =DELT PCG 282
C PRENICINR 1§ NOW GRAFDATED (A PAW 16 OF AUXs “ODIFIED PREDICTOR PCG 283
c IS GFNFRATFD IN Y. PELT MFANS AN AUXTLIARY STORAGFK, _PCG 284
¢ - ’ PCG »os
CaLL FCTIX,VsNFOYY PCG 2R6
¢ PEOTYATIVE OF MODIFIFD PREDICTOR 1€ GENERATED I[N DERY PCG 287
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AHE FOLLOWING PARI aF SUHW(\UAT'{NF HD(’(‘.-(‘!.\Mnu‘[’::; RY MEAMS NS
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208

209

210

211
212
213
214
718

216
217
218
219

220

221

229

223

224

152

DO 208 T=1,MDIM

ONEY Tr 12880 #AURXINST o T ) =AURIM=35 T 14+ 3. #HRIDERY LT ) +AUXIN+ 65T )+
LAUXIN+6:T)=AUX(N+5s1)))

AUYL16+ 1) =AUX{ 16 1)~DELT

Y41V =NFLT2,07222001 724 AUX(1AsT)

TEST WHETHER H MUST RF HWALYER AR ~AUDLrT
neLT=0.

DO 209 I=1.NDIM
DELI=DELT4AUX(15,1)12ABSTAUX{1821))
IF(DELT—-PRMT(4))210,772:222

W MUST NOT eF HALYFN, THAT MFANS Y1) ARM NN,
CALL FCT(XaYoNENY)

CALL OUTP{XsYsNFRY s THLFaNR]M NPTy
]F(DDMT(R),717,?119777

TE(IHLE=111212421247270

RE TURN

PE (W8 (X=-PPuT(7)1)214,2124212
IE(ARSIR=-PONT(2) )=, 15ARSIH) 21252155215
TE(NFLY-,072PRMT{/1)1214,21£,201

H COULD RE DAYRLFD TF ALl NECESSARY PRECTENING VALUFS APF
AVAILABLF

IF(IMLF) 201520145217
IFIN=7)201,2185218
IF(ISTEP~4)20142195219
IMOD=ISTFP/?
IE(ISTED-_TMANLTINARYS(OT13270: 3017
HaH+H

IHLF=THLF~-1

187€P=0

DO 221 T=1,NNIM
AUK{M=1 5T )=AUX(N=2,7T)
AUXIN=Z 0Ty =AUXIN=L,T)
AUXTIN=25T)=AUX (N=f T
AUX(N+8 1) =AUX(N+& 5 T)
AUXIN+8 51 ) =AUR {Na2 57
AUX(N+4 5] ) =AUX (N+1o7)
DELT=AUX{M+8s T YLAUX{ M55 1)
NELT=0FL TANE Tahe T
OAUY (18 1) =0, 080N {Y(T)-AUXIN-361))1-3.361111#H*(DERYC(I)+DELT
1+AUX(N+451))

GOTO 201

H MUST PE payyEn

THLF=THLF+1

TF(IHLF=10172724232,3910

Hs o 54#H

{STEP=O

NO 2286 T=1,NNTM
OYV{1)=,0070027%2 {00, #AUXIR=-TsT7)+136#¥AUXIN-2211+40.%AUXIN=-351)+
TAUR(N =261 ) )= 11718783 (AUXIN4+6s] ) =6 ¥AUX(N+S o 1) =AUX{N+45 1)) %M
OAUX(M=65T1=,002C08% 2 (17, RAUX(N=-T15 714138 ¥AUXIN=2,1)+
1109 #AUXIN=3 5T ) +AUXIN=G91))1=20234375%# (AUXIN+6s1)+18, #AUXIN+5s1 )=
29, #AUX{N+4 1)) #H

AUX(N=5sT)=AUX{N=257)

AUX{N+4 91 )=AUXIN+S 1)

X=X=H

DELT=X=(H+H)

CALL FCTIDELT:YsDERY)

PO 225 I=1-NDIM

AU (N=2:1)=Y (1)

PCG
e
PG
prea
pCh
PCG
PCG
PCG
neG
-1d ¢}
PeG
pen
PCG
PCG
pee
pCG
PG
PCG
pCG
PCG
Pce
PCG
PCG
PCG
PCG
PCG
PCG
oCG
PCG
PCG
PCG
BCG
PCG
PCG
oCG
PCG
PCG
PCG
PCG
PCG
pCG
PCG
PCG
PCG
PCG
PCG
PCG
pCG
PCG
PG
BCG
PCG
PCG
PCG
PCG
Lldd
PCG
PCG
PCG
PCG
PCG
PCG
PCG
PCG
PCG
PCG

288
2820
296
’in1

2Ny
293
204
295
278
207
298
279
edol¢}
301
302
3ni3
any
3nsS
206
307
308
o
210
211

312
313
214
219
316
317
318
219
220
221
222
323
324
325
326
227
Qe
329
330
331
132
21213
338
135
336

337
238

230
240
341 -
342
343
344
345
246
347
348
340
280
251
352
353
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AUX(N+5 1 1=DERY(T)
225 Y(1)sAUX({N-be1}
DELT2DEL T (H+H)
CALL FCTIDELTsYsDERY)
DO 226 I=1sNDIM
DEL “zAUR{M+B s T VS AUR{N245 1)
DELT=DEL F+DELT+DELT
OAUX{16911=8:9629632 ¢ AURIM=T1sT1=Y{T1)~2,22 71 11 #H2(AUXIN+As T Y4DELT
1+DERY (1))
226 AUX(N+3s1)=DERY(1)
- GOTO 206
END

PCG
PCG
PCG
PCG
pCa
PCG
PCG
PCG
PCG
PCG
PCG
PCG

ELYN
355
RKA
357
389
2RQ
240
341
362
363 .
364
365



154

APPENDIX C

CONVERGENCE OF THE MWR SOLUTIONS

C.1l Discussion

Calculations were made for the first, second, and third
approximations of the MWR by emploving the CSM eddy-viscosity
model in the turbulent shear information terms. The calcu-
lated velocity profiles, Mach-number profiles, and skin-
friction distribution are shown in Figures Cl to Cl5 for
four different free-stream Mach numbers and all three ap-
proximations. The convergence properties of these solutions
are particularly satisfying, since very little success has
previously been obtained for approximations above the second
order for turbulent flow. The skin-friction calculations
converge toward the experimental data for successive approxi-
mations. The calculations of velocity and Mach-number pro-
files also display convergence in the sense that the third
approximation is always much nearer to the second than the
second approximation is to the first; however, the profile
calculations are not always convergent to the experimental
data. This may be because the comparison between calcula-
tion and experiment is not totally valid for velocity and
Mach-number profiles as discussed in Section 3.8.

The small difference between the third approximation
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4.0 T 1 I ] ] 1
2.0 -
(a2}
S 1.0f -
X | -
4
@) — - First approximation
0.6 . . -
—— Second approximation
e . — Third approximation
B O Data of Coles [24] ]
0.2 | | } l L. | |
0.4 1.0 4.0 10.
-6
Rex x 10

Figure Cl: Comparison of the MWR Skin-Friction Calculations
with Experiment, Me = 2.54 i
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Figure C5: Comparison of the MWR Skin-Friction Calculations
with Experiment, M, = 2.95
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Figure C8: Comparison of the MWR Skin-Friction
Calculations with Experiment, Me = 3.69
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— — First approximation

——— Second approximation

Third approximation

®) Data of Matting et al. [30]
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Figure Cl2:

10. 40. 100.

Comparison of the MWR Skin-Friction Calculations
with Experiment, M, = 4.2
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and the second in this work supports the contention of
Forsnes and Abbott [C1] and Deiwert and Abbott [C2] that the
second approximation is sufficient for most engineering

purposes.
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APPENDIX D

AN INITIALIZATION PROCEDURE FOR dCf/dRex

D.1 Introduction

A method is devised by which the calculated value of
dCf/dReX at the initial calculation station of the MWR
prediction procedure can be forced to match the experimental
value of dCf/dRex at X, For the purposes of this report,
the experimental value of dcf/dRex at X, is defined as the
value obtained by: (1) fitting a straight line to the
experimental results on a plot of log Cf versus log ReX in
the region near X (2) determining the equation which
represents this straight line, Ce = aRezr and (3) analyt-

ically differentiating this equation at X

D.2 Analysis

The basic assumption underlying this dCf/dRex initial~-
}zation procedure is that the fractional error in the cal-~
culated value of the shear integral 9, at X is assumed to
be the same as the fractional error in the calculated
values of'g2 at all streamwise stations. For the present
the initialization procedure is restricted to a second
approximation of the WNWR.

From equation (3.74), reproduced below,

Cem o TTTIRTTTD (3.74)



172

it is seen that
% /Re
2u.p Re

C. = (D.1)
£ p UL F(0)(C -C,)

for a second approximation. Differentiation of equation

(D.1) yields

dc, _ Cg (dcl ) dcz} 0 2)
dg Cy-C, (d& dé
Equation (3.55), reproduced below,
. U
acC e il
k _ & w1 o a1 _ e =1
aE = 7 ALy Iij cj A7 B, r A9 (3.55)
simplifies to
dcC H
k _ _ _ e -1 .
3 = UAIC, - AINB, . A 9 (D.3)
where U
UAIC, = ~S§ a1 ¢ (D.4)
k Ue ki “i3 73 °
and
-1
AINB, = A, B, (D.5)

Substitution of equation (D.3) into equation (D.2) and

conversion to the physical variable x yield

dcf 1 peUe Cf ‘
I = T 50 eTIE UAICLBUAICZNAINB1+AINB2
rr i 72
M
e -1 -1
- Ll_; [AlZ AZZ] gzg (D.6)

The experimental value of dcf/dRex at the initial station

2 is substituted into eguation (D.€), the remaining terms
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are also evaluated at X and the equation is solved for the

value of g, - denote this value by the symbol g .
desired
This is the wvalue of 9, at Xy which, if used in the MWR

calculation program, will vield the sxperimental value of

dCf/dRex at x . Now the value of g, at x_ iz calculated

by using a specified shear model - denote this value by the

symbol g, » This wvaluve of gye substituted into equa-

model

tion (D.6), would most likely yield a value of dCf/dReX

different than the experimental value of dCf/dRex at X

Then in the prediction program whenever a value of 9, is

calculated using a specified shear model, this value can

be multiplied by the constant corrective factor of

9, / 95 . This procedure assures that the cal-
desired model

culations will at least start with the experimental value

of dCf/dReX at X e



